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ABSTRACT The association of two species to form a bound complex, e.g., the binding of a ligand to a protein or the
adsorption of a peptide on a lipid membrane, involves an entropy loss, reflecting the conversion of free translational and
rotational degrees of freedom into bound motions. Previous theoretical estimates of the standard entropy change in
bimolecular binding processes, DSo, have been derived from the root-mean-square fluctuations in protein crystals, suggest-
ing DSo ' 250 e.u., i.e., TDS° ' 225 kT 5 215 kcal/mol. In this work we focus on adsorption, rather than binding processes.
We first present a simple statistical-thermodynamic scheme for calculating the adsorption entropy, including its resolution
into translational and rotational contributions, using the known distance-orientation dependent binding (adsorption) potential.
We then utilize this scheme to calculate the free energy of interaction and entropy of pentalysine adsorption onto a lipid
membrane, obtaining TDSo ' 21.7 kT ' 21.3 kcal/mol. Most of this entropy change is due to the conversion of one free
translation into a bound motion, the rest arising from the confinement of two rotational degrees of freedom. The smaller
entropy loss in adsorption compared to binding processes arises partly because a smaller number of degrees of freedom
become restricted, but mainly due to the fact that the binding potential is much “softer.”

INTRODUCTION

The association of two freely translating and rotating mol-
ecules to form a complex, in the gas phase or in solution,
involves a loss of entropy. Therefore, the complex will
survive as a stable species only if its formation is favored on
enthalpic grounds. That is, the potential energy of the bound
complex must be lower than that of the well-separated
molecules. In solution it is the potential of mean force that
must be lower.

In biological systems one is usually interested in the
association of two polyatomic species, e.g., a drug molecule
binding to a protein or DNA, a ligand binding to a receptor,
or a protein adsorbing on a lipid membrane. The complex is
typically noncovalently bound, with binding free energies
on the order of215 kT. Even if the internal degrees of
freedom (vibrations and internal rotations) of the bound pair
are not affected by the association process, there are usually
six degrees of freedom that are affected by the formation of
the complex. Three of these are the relative translational
motions of the two species; center of mass translations play
no role in the process. The other three (of a total of six) are
rotational degrees of freedom corresponding to their relative
orientation; three other rotational degrees of freedom, cor-
responding to the overall rotations of the complex, do not
affect the association.

Upon complex formation these six degrees of freedom
convert into “oscillations” (vibrations and/or hindered rota-
tions) within the potential well of the complex. In general,

these oscillations are “soft,” i.e., their frequencies are low,
with average energies per mode on the order ofkT, wherek
is Boltzmann’s constant andT the absolute temperature. In
some systems, certain degrees of freedom may remain
“free” even in the complex, e.g., a rotation of an elongated
ligand around its long axis, or the two lateral translations of
a molecule adsorbed on the surface of a membrane. Assum-
ing, as we do in this paper, that the bound motions are
indeed soft, they are adequately described by classical sta-
tistical thermodynamics. The classical limit is certainly ad-
equate for describing the free motions of the separated
species. This in turn implies that momentum factors (inte-
grals) appearing in the molecular partition functions of the
separated species and the complex are totally irrelevant in
the statistical thermodynamic description of the association
process. They cancel out identically in all the expressions
(equilibrium constants) governing the association equilib-
rium (Mayer and Mayer, 1946; Erickson, 1979, 1989;
Finkelstein and Janin, 1989; Holtzer, 1995; Janin, 1995;
Ben-Shaul et al., 1996; Brady and Sharp, 1997a; Gilson et
al., 1997). One only needs to consider contributions from
the configurational partition functions of these molecules.

The configurational space of the separated, independently
translating and rotating, species isV 5 (8p2V)2. One 8p2

factor for each species arises from the integral over the three
(Euler) angles describing their orientation. Similarly, one
volume factorV arises from the integral over the transla-
tional coordinates. The configurational space of the associ-
ated pair can be written asdVb 5 (8p2V)dYdV. The first
factor accounts for the overall translation and rotation of the
complex, whereasdYdV represents the (6-dimensional)
phase space volume corresponding to the relative motions
(oscillations) of the two species with respect to each other
within the complex. We refer todY as the (restricted)
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rotational “volume” and todV as the restricted spatial vol-
ume of the bound motions. Although the internal—angular
and positional—degrees of freedom are generally insepara-
ble, it is clear that the decompositiondV 5 dVb/(8p2V) 5
dYdV is dimensionally correct, that is, it must have the
dimensions of [length]3. One may interpret (dY)1/3 as the
average angular amplitude of the hindered rotations, and
(dV)1/3 as that of the bound spatial oscillations (see, e.g.,
Hill (1985)).

The entropy change attendant upon the association of the
initially separated species to form a complex isDS 5 k
ln(dV/V) 5 k ln(dY/8p2) 1 k ln(dV/V) [ DSrot 1 DStrans,
with DSrot andDStransrepresenting the rotational and trans-
lational entropy losses, respectively (Erickson, 1979, 1989;
Finkelstein and Janin, 1989; Janin, 1995; Gilson et al.,
1997; Brady and Sharp, 1997a). Both quantities are negative
sincedY/(8p2) ,,1 anddV/V ,, 1. The “standard” entropy
change is specified once we define the “standard volume,”
e.g.,V 5 Vo 5 1000 cm3/(6.0233 1023) > 1660 Å3 when
the standard state corresponds to 1 M.

All the above notions are intuitively obvious, have been
cast in simple terms with the help of elementary statistical
thermodynamics (e.g., Hill, 1985; Holtzer, 1995; Janin,
1996; Gilson et al., 1997; Brady and Sharp, 1997a), and
have been proved useful in the analysis of complex forma-
tion in many biological systems (Steinberg and Scheraga,
1963; Go and Scheraga, 1969; Page and Jencks, 1971;
Jencks, 1975; Chothia et al., 1976; Janin and Chothia, 1978;
Erickson, 1979, 1989; Dwyer and Bloomfield, 1981;
Finkelstein and Janin, 1989; Novotny et al., 1989; Horton
and Lewis, 1992; Searle and Williams, 1992; Searle et al.,
1992; Peitzsch and McLaughlin, 1993; Murphy et al., 1994;
Tidor and Karplus, 1994; Holtzer, 1995; Janin, 1995; Mor-
ton et al., 1995; Ben-Shaul et al., 1996; Brady and Sharp,
1997b; Froloff et al., 1997).

The vast majority of the biological systems that have
been studied involve binding; there is only one study of the
association entropy in partitioning processes (Peitzsch and
McLaughlin, 1993) and no study of the entropy loss in
adsorption processes. In the following we report an estimate
of the entropy change in the adsorption process. Most the-
oretical and semiempirical methodologies for evaluating
free energies of association are based on calculating the
contribution of the potential of mean force and adding an
estimate of the entropy (e.g., Novotny et al., 1989; Vajda et
al., 1994; Weng et al., 1996). The main objective of this
manuscript is to report detailed calculations of the associa-
tion entropy for the adsorption of peptides on membranes,
which are (to the best of our knowledge) the first ones in a
biological system.

Many proteins contain clusters of basic amino acids (e.g.,
a sequence of five lysine residues), which facilitate mem-
brane-association through electrostatic interactions with
acidic membrane lipids (e.g., Murray et al., 1997). We have
studied the membrane association of two types of model

systems: positively charged peptides, such as pentalysine
(Ben-Tal et al., 1996; Murray et al., 1998, 1999), and small
positively charged proteins, such as charybdotoxin (Ben-Tal
et al., 1997). We have used classical electrostatics in the
framework of continuum solvent models and calculated the
surface excess concentration of the peptides/toxins near
lipid bilayers of different compositions of negatively
charged 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoserine
(PS) and neutrally charged 1-palmitoyl-2-oleoyl-sn-glyc-
ero-3-phosphocholine (PC) lipids. In this paper we analyze
the relative enthalpy and association entropy components of
our data on the adsorption of pentalysine onto 2:1 PC/PS
membrane.

ADSORPTION THERMODYNAMICS

In this section we review the thermodynamics of adsorption.
Some of the derivations presented below appear in text-
books (e.g., Hill, 1985; Adamson, 1990) and in review
articles (e.g., Gilson et al., 1997). We include these deriva-
tions for completeness and to avoid ambiguities regarding
the choice of standard states (e.g., for partitioning coeffi-
cient versus surface excess; White et al., 1998).

Consider the adsorption of a peptide,P, onto the surface
of a lipid membrane. LetA denote the total surface area
available for adsorption, e.g., the outer surface of a large
(and hence essentially planar) vesicle. Identifying thexy
plane with the membrane surface we assume that the bind-
ing (adsorption) potentialW(r , Y) depends only on the
normal distance of the peptide from the surface,W(r , Y) 5
W(z, Y), and the relative orientation of the peptide with
respect to the membrane,Y, as specified by three Euler
angles. The binding potential is chosen so thatW(z, Y) 5 0
as z3 `. More specifically, we assume that the binding
potential is of finite range,l, so thatW(z, Y) [ 0 for z . l,
i.e., the peptide is considered as “bound” ifz # l. It should
be noted that because the adsorption process takes place in
solution,W(z, Y) 5 W(z, Y; T) is in fact a potential of mean
force, representing the thermal average of the adsorbate-
surface interaction potential over the solvent’s degrees of
freedom. In the theoretical analysis and the calculations
presented below, the solvent is treated as a continuous
medium. Within this scheme one can account (approximate-
ly) for the fact that the adsorption potential is, actually, an
interaction free energy(i.e., potential of mean force), by
allowing the solvent’s properties (e.g., the dielectric con-
stant) to vary with temperature. However, all the calcula-
tions presented below refer to one specific (room) temper-
ature and do not involve any temperature derivatives. Thus,
the (generally very weak) dependence ofW on T does not
enter our calculations and hence, throughout the discussion,
we shall treatW as a temperature-independent quantity.

Upon binding, four degrees of freedom (three rotations
and the translation alongz) become bound motions. If the
peptide is symmetric with respect to rotations around its
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axis, only two of the three rotations change their character
upon binding; this is the case considered in the numerical
calculations presented in the next section.

Consider now an aqueous solution of volumeV contain-
ing, say, one giant vesicle, of adsorption areaA and N 5
Nf 1 Nb peptide molecules,Nf andNb denoting the numbers
of free and bound peptides, respectively. Assuming dilute
solution behavior (i.e., the peptides to not interact with each
other, neither in solution nor in the adsorbed state) the
equilibrium ratioNb/Nf is given by (Hill, 1986),

Nb

Nf
5

qbVb

qfVf
>

lA

V

qb

qf
(1)

whereVb 5 lA is the binding volume andVf . V is the free
volume.qb andqf are the configurational partition functions
of the peptide, per unit volume, in the bound and free states.
More explicitly

qb 5
1

Vb
EdrdY exp@2bW~r , Y!# 5

1

l E
0

l

dzq~z! (2)

whereb 5 1/(kT) and

q~z! 5 EdY exp@2bW~z, Y!# (3)

is the local partition function of the peptide at distancez
from the membrane surface. More precisely,q(z) is a local
configurational-rotational partition function. IfW [ 0, as is
the case for a free peptide,q(z) 5 qf 5 8p2.
The quantity

f~z! 5 2kT ln q~z! (4)

is the configurational part of the rotational free energy, per
molecule, at distancez from the surface. The entropic and
energetic contributions corresponding tof(z) 5 w(z) 2 Ts(z)
are w(z) 5 kT2­ ln q(z)/­T 5 ^W(z, Y)&Y and s(z) 5 k ln
q(z) 1 kT­ ln q(z)/­T, where^W(z, Y)&Y denotes the (Boltz-
mann-weighted) average ofW(z, Y) over the orientations,
Y.
Using Eq. 1 we can define a partition or adsorption coeffi-
cient, k, as

k ;
qb

qf
5

sb

rf
(5)

whererf 5 Nf/V is the number density of free peptides in
solution andsb 5 Nb/Vb is an “effective” (3D) density of
bound peptides, defined with respect to the binding volume.
Alternatively, lbsb 5 Nb/A can be regarded as the surface
density of adsorbed peptides. In fact, Eq. 5, i.e.,sb 5 krf,
is Henry’s law, or the limiting form of Langmuir’s adsorp-
tion isotherm at low surface coverage; it follows immedi-
ately from the requirementmb 5 mf, expressing the equality

of the peptides’ chemical potential in the adsorbed (surface)
and free (bulk) phases. Explicitly, in the limit of lowrf and
low sb, one hasmf 5 mf

C 1 kT ln rf with mf
C 5 2kT ln qf

and similarlymb 5 mb
C 1 kT ln sb with mb

C 5 2kT ln qb,
implying k 5 qb/qf 5 exp[2bDGC] with DGC 5 mb

C 2 mf
C.

We usemb
C for the “standard chemical potential” of the

bound peptide to emphasize that it is defined with respect to
the bound, rather than the free, volume; i.e.,mb

C is the value
of mb corresponding tosb 5 Nb/Vb 5 1, as opposed tomf

C,
which corresponds tomf for rf 5 Nf/V 5 1.

The adsorption coefficientk is a dimensionless quantity,
depending only on molecular characteristics, namely on
W(z, Y), independent of the choice of standard state.k is
intimately related to another common quantity in adsorption
thermodynamics, the surface excess concentration,G, de-
fined as (e.g., Bockris and Kahn, 1993)

G 5 E
o

`

dz@r~z! 2 rf# 5 lrf@k 2 1# (6)

Herer(z) 5 (rf/qf) * dY exp[2bW(z, Y)] 5 rf q(z)/qf is the
local concentration of peptides at distancez from the ad-
sorbing surface. The second equality follows from our as-
sumption thatW(z, Y) vanishes forz . l.

The quantityDGC 5 mb
C 2 mf

C 5 2kT ln(qb/qf) can be
interpreted as the standard free energy change in adsorption.
It can be decomposed into enthalpic and entropic contribu-
tions,DGC 5 DHC 2 TDSC. Explicitly, the enthalpic term
is,

DHC 5
*

o
ldzw~z!q~z!

*
o
ldzq~z!

; ^w~z!&b (7)

where

w~z! 5
* dYW~z, Y!exp@2bW~z, Y!#

q~z!
(8)

is the, orientationally averaged, local potential at distancez
from the surface;̂w(z)&b denotes the (Boltzmann-weighted)
average ofw(z) in the bound state. For the entropy change
we have,

TDSC 5 kT lnF 1

qfl
E

o

l

dzq~z!G 1 ^w~z!&b (9)

The distance-orientation dependence ofW(z, Y) describ-
ing the adsorption of pentalysine on a lipid membrane has
been calculated recently (Ben-Tal et al., 1996). The entropy
and enthalpy changes in this process will later be calculated
using thisW(z, Y) in Eqs. 7 and 9.

In the Discussion our calculated values ofDSC (for pen-
talysine adsorption on acidic membranes) will be compared
to some estimates of the entropy loss in bimolecular binding
processes,DSo. The comparison is not entirely straightfor-
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ward because, thermodynamically, the adsorption of ligands
onto surfaces is a phase transition rather than a chemical
reaction. A meaningful comparison is nevertheless possible,
because in the limit of small concentrations of ligands both
adsorption and bimolecular association processes can be
treated as unimolecular reactions in which the free and
bound ligands are treated as different “isomeric states” of
the same molecule.

Consider first the adsorption process. Treating the bound
and free ligands as two isomers, the corresponding unimo-
lecular reaction constant,Kuni, can be defined usingKuni 5
(Nb/V)/(Nf/V), where it should be noted that the free and
bound ligand concentrations are defined with respect to the
same volume,V 5 Vb 1 Vf: namely, the total volume of the
solution. Using Eqs. 1 and 5 it follows that

Kuni 5 k~Vb/Vf! ; exp~2DGo/kT! (10)

with the last equation serving as the definition of the (uni-
molecular) reaction free energy. (To become a “standard”
free energy change we still need to specify the standard
volumes,Vf andVb; see below.) Then, becauseDGC 5 2kT
ln k, it follows thatDGo 5 DGC 2 kT ln(Vb/Vf). The second
term is purely entropic, implying

DSo 5 DSC 1 kT ln~Vb/Vf! (11)

where DSo is the entropic contribution toDGo, (DHC 5
DHo).

The second term in the last equation accounts for the
entropy change associated with bringing a free ligand into
the confine of the binding site. It depends, of course, on the
values ofVb andVf. Once “standard” values are chosen for
these volumes,DSo becomes the standard entropy change in
the reaction (in the limit of small ligand concentration).
Momentarily postponing the choice of the standard vol-
umes, it should be noted that in true unimolecular reactions
(e.g., molecular isomerization in solution or in the gas
phase),Vb 5 Vf 5 V and the choice of a standard state is
irrelevant; the entropy change in the reaction is independent
of the choice of the standard state and is given by the first
term in Eq. 11, i.e.,DSo 5 DSC. Indeed, in unimolecular
processes the reaction entropy depends only on internal
molecular properties, such as the stiffness of the intramo-
lecular potentials, but is independent of the difference in
zero point energies of the isomers or their available volumes
(Hill, 1986). Similarly, in the adsorption processDSC de-
pends only on the shape of the binding potential, but not on
the depth of its minimum, or the volumes ascribed to the
bound and free states. (In the free state the potential is flat,
by definition.) To emphasize this point we note, using Eqs.
7 and 9, that ifW(z, Y) is also “flat” (i.e., constant within the
binding region, 0, z , l), sayW(z, Y) 5 2e, thenDSC [
0 and DHC 5 2e (Hill, 1985). Thus, the value ofDSC

reflects the deviation ofW(z, Y) from the behavior corre-
sponding to a flat (“square well”) potential.

With Vb and Vf describing the volumes available to the
bound and free ligand, respectively, Eq. 11 can also be used
to estimate entropy losses in bimolecular binding processes.
Assuming that the binding site is a three-dimensional “box”
of volume Vb 5 dV 5 dxdydz within which the potential
energy is constant, it follows (by extension of the arguments
given above) thatDSC 5 0 and hence,DSo 5 k ln(dV/Vo),
where we have setVf 5 Vo, to emphasize that the definition
of the standard entropy change,DSo, requires a specification
of the standard volume for the free ligands. Indeed, standard
entropy changes in bimolecular binding processes have
been estimated based on the above equation,DSo 5 k
ln(dV/Vo), with dV estimated from the root-mean-square
(rms) fluctuations of the bound ligand andVo 5 1660 Å3,
corresponding to a standard free ligand concentration of 1
M (see, e.g., Finkelstein and Janin (1989)). This approxi-
mate scheme can easily be correlated with our approach,
which is based on Eq. 11 and involves an exact numerical
calculation ofDSC. Further details are given in the Discus-
sion. First, however, in the next section we elaborate on the
resolution ofDSC to translational and orientational contri-
butions.

Translational and orientational entropy changes

In the next section we present a detailed calculation ofDGC,
DSC, andDHC for one special case: pentalysine adsorption
on a lipid membrane. In this system, three degrees of
freedom become restricted upon association: the translation
normal to the membrane plane and two of the peptide
rotations. Once a complex is formed, we can no longer
identify one degree of freedom as a restricted translation
(vibration) and the other two as hindered rotations. Never-
theless, the following scheme allows not only a calculation
of the total entropy change,DSC, but also an estimate of the
rotational and translational contributions to this quantity.

Let 3(z, Y)dzdY denote the probability of finding the
ligand at distancez (within z, z 1 dz) from the adsorbing
surface and at orientationY with respect to a fixed system
of coordinates attached to the surface. Outside the binding
region3(z, Y) is uniform, i.e., it is a constant independent
of z or Y. Within the binding region

3~z, Y! 5
exp@2bW~z, Y!#

*
o
l dz* dY exp@2bW~z, Y!#

5
exp@2bW~z, Y!#

*
o
l dzq~z!

5
q~z!

*
o
l dzq~z!

exp@2bW~z, Y!#

q~z!

5 3~z!3~Yuz! (12)

In the last equality we have expressed the joint distribution
3(z, Y) as a product of the (marginal) distribution3(z) 5
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* dY3(z, Y) and the conditional distribution3(Yuz). 3(Yuz)
is the probability density of finding the peptide in orienta-
tion Y, given that its distance from the surface isz.

For a spatially and orientationally uniform distribution,
3(z, Y) 5 30(z, Y) 5 1/(8p2l), the entropy changeDS [
0. Using the familiar “3 ln 3” representation of the entropy,
we can expressDSC in the form

DSC 5 2kE
o

l

dzE dY3~z, Y!lnF3~z, Y!

30~z, Y!G
5 2kE

o

l

dz3~z!lnF3~z!

30~z!
G 1 E dz3~z!Ds~z!

; DStrans
C 1 DSrot

C (13)

where30(z) 5 1/l is the uniform translational distribution
in the bound region, and

Ds~z! 5 2kE dY3~Yuz!lnF3~Yuz!
30~Yuz!G (14)

is the local rotational entropy atz; 30(Yuz) 5 1/(8p2) is the
uniform (local) orientational distribution.

The last equality in Eq. 13 defines the translational and
orientational contributions to the association entropy. It
must be stressed, however, that we could also factorize
3(z, Y) as3(z, Y) 5 3(Y)3(zuY), in which case we would
get a different decomposition ofDSC, which can also be
interpreted as a sum of rotational and translational terms.
The results obtained for the rotational and translational
entropies corresponding to these different factorizations of
3(z, Y) are generally different. They are the same only if
3(z, Y) 5 3(z)3(Y), i.e., if the two degrees of freedom are
fully independent of each other. As long as they are coupled
the decomposition cannot be unique.

PENTALYSINE ADSORPTION ONTO A
LIPID BILAYER

In this section we present a detailed calculation of the
entropy and enthalpy changes in the course of pentalysine
adsorption onto a lipid membrane composed of a 2:1 POPC/
POPS mixture, in 100 mM salt solution. The interaction
potential corresponding to this system has been calculated
in atomic detail, taking into account the distance and orien-
tation of the peptide with respect to the membrane surface
and the corrugation of the adsorbing membrane (Ben-Tal et
al., 1996). Here, however, we treat the membrane as a
perfectly flat surface, that is, we averageW(x, y, z, Y) over
the lateral coordinatesx, y, obtaining the distance-orienta-
tion interaction potentialW(z, Y); z denoting the normal
distance between the van der Waals surfaces of the peptide

and the membrane when the peptide plane is parallel to the
membrane plane.

The orientation of the peptide relative to the surface is
specified by three angles, (x, h, g). x andh were defined
relative to an orientation where the peptide is parallel to the
membrane surface, with its backbone along thex axis (Fig.
2 in Ben-Tal et al., 1996). Specifically,x denotes the angle
of rotation of the peptide around thez axis, i.e., around the
membrane normal;h is the angle of rotation of the peptide
aroundx, that is, around the peptide backbone;g is the angle
of rotation of the peptide aroundy, an axis parallel to the
membrane surface and perpendicular to the peptide back-
bone. Assuming that the association is due only to electro-
static interactions, we identify the electrostatic free energy
with W(z, Y) above.

The pentalysine-membrane interaction potential has been
calculated using a continuum solvent model for the electro-
static free energy. More specifically, the interaction free
energy has been evaluated for (the same) 67 configurations,
Y, for closely spaced distancesz within the range of the
attractive potential 0, z , l. Beyond l ' 14 Å the
potential is practically zero; the Debye screening length
corresponding to 100 mM salt solution islD ' 10 Å.

Fig. 1 showsw(z), Df(z) [ f(z) 2 f(`), and2TDs(z) 5
Df(z) 2 w(z) for the membrane-pentalysine system;w(z) is
the orientationally (Y) averaged electrostatic free energy of
interaction between the peptide and the lipid bilayer in
water. The Coulombic attraction between the positively
charged peptide and the negatively charged membrane pre-
vails forz. 2.5 Å, i.e., as long as at least one layer of water
molecules separates the peptide from the bilayer (the diam-
eter of water molecule is'2.8 Å). Forz # 2.5 Å a portion
of the region between the peptide and the membrane is no
longer accessible to water and is assigned a low dielectric
constant. When pentalysine approaches the membrane sur-
face, the charges on the peptide and the membrane in this

FIGURE 1 Pentalysine binding to a 2:1 PC/PS lipid bilayer in 100 mM
monovalent salt solution.Df(z) [ f(z) 2 f(`) is depicted with squares
connected by the solid line,w(z) as circles connected by the dashed line,
and2TDs(z) as diamonds connected by the dotted line. See text for details.
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region are transferred to a low dielectric region, which gives
rise to Born repulsion as explained in more detail in Ben-Tal
et al. (1996) and references therein.

The calculations show thatDf(z) is almost identical to
w(z) for z . 2.5 Å. At shorter distances, where peptide
rotations are restricted,Df(z) becomes less negative than
w(z). Indeed, the difference between them,2TDs(z), is a
monotonically decreasing function ofz with a moderate
slope at long distance,z . 2.5 Å. At shorter distances,
where excluded volume constraints limit the permitted
range of the tilt anglesh andg, the2TDs(z) curve becomes
steeper. It is evident from the figure that the orientational
entropy changes are significant only over a small region
(z, 2.5 Å), smaller than the range of the attractive peptide-
membrane potential,w(z). We thus expect a rather small
entropic contribution to the adsorption free energy.

The free energy of adsorption of pentalysine to 2:1 PC/PS
lipid bilayer in 100 mM salt, calculated from the results of
Fig. 1, is DGC 5 2kT ln k 5 26.2 kT, wherek is the
adsorption coefficient of Eq. 5. The enthalpic and entropic
contributions to the adsorption, Eqs. 7 and 9, areDHC 5
28.1 kT andTDSC 5 21.9 kT, respectively.

Decomposition using Eq. 13 shows that;21.5kT of the
entropy contribution is fromDStrans

C , reflecting the restricted
translational freedom of the adsorbed peptide along the
membrane normal. The rest of the entropy loss,;20.4 kT,
reflects the confinement of orientational freedom of the
adsorbed peptide. We therefore estimate a free energy pen-
alty of ;1.5 kT per confined translational degree of free-
dom, i.e., free translational degree of freedom, which be-
comes vibration. Again, this analysis would have been
incorrect if z and Y were strongly coupled to each other.
Fig. 1 indicates that this is not the case here;Ds(z) is almost
independent ofz except for very short distances, and our
analysis is a reasonable approximation.

DISCUSSION

The adsorption of a peptide onto the surface of a membrane
differs from “typical” bimolecular binding processes in two
main respects: 1) In adsorption only one, rather than three,
translational degree of freedom is converted to a bound
motion. 2) The adsorbing potential is generally “softer,”
resulting in larger rms fluctuations of the adsorbed ligand
around its equilibrium state. Both factors suggest that the
entropy loss in the adsorption process should be consider-
ably smaller than in bimolecular complex formation. In the
following we compare our results from the previous sec-
tions with other relevant estimates of entropy losses in
association processes. To this end we shall first need to
transform our expressions for the adsorption entropy into
the language commonly used to describe chemical binding
equilibrium.

The translational entropy loss in adsorption, as given by
the first term in Eq. 13, can be expressed in the approximate

form DStrans
C ' k ln(dz/l), wheredz is the “width” of the

distribution function3(z) within the well of the adsorption
potential, andl, as before, is the range of the potential (or,
equivalently, the thickness of the layer defining the adsorp-
tion region). The width,dz, can be approximated by the rms
fluctuations of the adsorbate around the minimum of the
potential well, assuming that the potential is harmonic
around its minimum (see below). (Alternatively,DStrans

C 5 k
ln(dz/l) can be regarded as the definition ofdz.) Similarly,
DSrot

C ' k ln(dY/8p2), with dY denoting the 3D rms fluc-
tuations in rotational angles of the bound peptide.

An identical expression to the last form ofDSrot
C , namely

DSrot
o ' k ln(dY/8p2), is often used to estimate the orienta-

tional entropy loss in bimolecular ligand binding processes
(Erickson, 1979, 1989; Finkelstein and Janin, 1989; Janin,
1995; Gilson et al., 1997; Brady and Sharp, 1997a) (Recall
that when the concentration of ligands is much smaller than
that of the substrate, the bimolecular association process is,
effectively, a unimolecular process with respect to the li-
gand. The substrate is then treated as stationary).

Typically, in bimolecular association processes, three
translational degrees of freedom are converted to bound
motions (as compared to one degree of freedom in the
adsorption on a flat membrane). The 3D translational en-
tropy loss in these processes is often estimated using the
expressionDStrans

o ' k ln(dV/Vo) (Erickson, 1979, 1989;
Finkelstein and Janin, 1989; Janin, 1995; Gilson et al.,
1997; Brady and Sharp, 1997a). Here,dV 5 dxdydz is the
3D rms fluctuation of the ligand (center of mass) position in
the bound state, andVo 5 XoYoZo is a reference or “stan-
dard” volume, representing the volume available to the free
ligands in solution. Assuming that the bulk solution is
contained in a cubic box (Xo 5 Yo 5 Zo 5 Vo

1/3), the
standard translational entropy loss per one (say, thez)
translational degree of freedom isDStrans

o,z 5 k ln(dz/Vo
1/3) '

DStrans
o /3.
The last expression forDStrans

o,z can directly be applied to
calculate the “standard” translational entropy loss inad-
sorption. Using this definition we noteDStrans

o,z 5 DStrans
C 1

k ln(l/Vo
1/3). The interpretation of this equation is straight-

forward. The second term on its right-hand side is the
entropy change associated with bringing the ligand from (its
standard state in) the bulk solution into the adsorption layer,
l. The first term reflects the entropy loss associated with the
fact that once adsorbed, the center of mass position of the
ligand is actually confined to a small rangedz around the
minimum of the potential well.

The most common choice of a standard state corresponds
to a (hypothetical, ideal) solution containing free ligands at
concentration of 1 M (see, for example, Finkelstein and
Janin, 1989). This, in turn, impliesVo ' 1660 Å3 and hence
Vo

1/3 ' 11.84 Å. (The small value ofVo represents the
“average volume per solute particle” in a solution contain-
ing an Avogadro number of indistinguishable solutes. One
should not attribute much physical significance to this
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value, neither to the assumption that the solution is ideal.
One could just as well choose a more realistic standard state,
e.g., a 1mM ideal solution. We shall use the 1 M standard
state because this is the usual choice.)

Using the above value ofVo and ourl 5 14.25 Å, we
obtaink ln(l/Vo

1/3) 5 0.2k. (Again, the apparent increase in
entropy upon transferring the free solute into the adsorption
layer is a consequence of the choice of a small value forVo,
the entropy change in this process would be negative if the
standard volume was just slightly larger.) For the standard
translational entropy change in the adsorption process we
obtain2TDStrans

o,z 5 2TDStrans
C 2kT ln(l/Vo

1/3) 5 1.5 kT 2
0.2 kT 5 1.3 kT, i.e., DStrans

o,z and DStrans
C are not very

different in this case.
Before comparing the value ofDStrans

o,z with other esti-
mates it is instructive to examine the approximate expres-
sion DStrans

C 5 k ln(dz/l), with dz measuring the rms fluc-
tuations of the peptide in harmonic potential inz against the
exact (numerical) calculation ofDStrans

C as given by the first
term in Eq. 13. The magnitude of the force constant (from
w(z5 3 Å) 5 28.46kTandw(z5 4 Å) 5 27.73kT) is j 5
1.5 kT/Å2. The rms fluctuations inz is thendz 5 (2pkT/
j)1/2 5 2.1 Å and2TDSC 5 2kT ln(dz/l) 5 2kT ln(2.1/
14.25)5 1.9kT; very similar to the calculated value, 1.5kT.
The above estimate of translational entropy loss is very
similar to the value predicted by Erickson (1989), allowing
rms fluctuations of (2 Å)3 in bound complexes. His argu-
ment for choosing the (2 Å)3 range was that these fluctua-
tions would seriously disrupt the van der Waals, ionic and
hydrogen bonds across the interface and larger displace-
ments would admit water and disrupt the hydrophobic bond-
ing. The;1.5kT estimate per confined translational degree
of freedom thus appears to be characteristic of loose com-
plexes and may be regarded as an approximate lower limit
for the entropy loss upon association in biological systems.

Our calculated value of the total (translational and rota-
tional) standard entropy loss in the adsorption process,
2TDSo 5 1.9kT 2 0.2kT 5 1.7kT, may also be compared
with the estimate obtained by Peitzsch and McLaughlin
(1993) based on their measurements of the partitioning of
fatty acids and acylated peptides into phospholipid vesicles.
Specifically, their estimate of the standard entropy loss is
2TDSo ' 3 kT.

For tight binding processes, the estimate of Finkelstein
and Janin (1989) based on rms fluctuations of (0.25 Å)3

taken from B factors in protein crystals seems quite reason-
able. They obtain 12kT for confining three translational
degrees of freedom and about the same for the three rota-
tions. We may regard their estimate as corresponding to an
approximate upper limit. To summarize, the difference be-
tween our low estimate of2TDSo 5 1.7 kT and their high
estimate of;25kT is a consequence of two reasons: 1) only
three of six external degrees of freedom are confined in
adsorption processes, and 2) the confined degrees of free-

dom are less tightly bound in adsorption than in binding
processes.

Taken together, our results indicate that association en-
tropy plays a minor, yet non-negligible, role in adsorption.
Obviously, it depends on the physical dimension of the
adsorbed peptide and on the depth of the binding potential;
a longer and/or more tightly adsorbed peptide would be
more confined, leading to a larger association entropy. In
addition, the more degrees of freedom restricted in the
association, the larger the association entropy.
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