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Large amounts of experimental data triggered by technological 
advances are increasing the interaction between biology, medi-
cine, and quantitative sciences1–3. For instance, the amount of 

genome sequencing data is growing exponentially while data stor-
age capacity only grows linearly4. Numerous large databases in 
molecular biology and large clinical datasets increasing through 
electronic health records call for novel ways to interrogate, analyse 
and process biological and biomedical data for gaining biological 
and medical insights5.

Machine learning (ML) automatically identifies patterns and 
regularities in existing data to accurately predict for unseen data6. 

Despite the complexity of the underlying mathematical concepts, 
ML has attracted broad attention even outside of the research com-
munity: querying Google Trends7 with “machine learning” dem-
onstrated an exponential increase over the past decade (January 
2010–February 2019, data not shown). This general rise has been 
mirrored in many fields of biology and medicine—that is, the life 
sciences8–11—although keeping track with the rapid evolution of 
artificial intelligence (AI) challenges even those applying ML12. 
Typically, large biological or medical datasets enable the develop-
ment of ML models that can be used to predict biological or clinical 
phenotypes through measurements from novel samples.

Validity of machine learning in biology and 
medicine increased through collaborations across 
fields of expertise
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Machine learning (ML) has become an essential asset for the life sciences and medicine. We selected 250 articles describing 
ML applications from 17 journals sampling 26 different fields between 2011 and 2016. Independent evaluation by two readers 
highlighted three results. First, only half of the articles shared software, 64% shared data and 81% applied any kind of evalua-
tion. Although crucial for ensuring the validity of ML applications, these aspects were met more by publications in lower-ranked 
journals. Second, the authors’ scientific backgrounds highly influenced how technical aspects were addressed: reproducibility 
and computational evaluation methods were more prominent with computational co-authors; experimental proofs more with 
experimentalists. Third, 73% of the ML applications resulted from interdisciplinary collaborations comprising authors from at 
least two of the three disciplines: computational sciences, biology, and medicine. The results suggested collaborations between 
computational and experimental scientists to generate more scientifically sound and impactful work integrating knowledge 
from both domains. Although scientifically more valid solutions and collaborations involving diverse expertise did not correlate 
with impact factors, such collaborations provide opportunities to both sides: computational scientists are given access to novel 
and challenging real-world biological data, increasing the scientific impact of their research, and experimentalists benefit from 
more in-depth computational analyses improving the technical correctness of work.
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Quality and validity of ML models hinge on two primary factors: 
(1) size, quality and universal validity of data; and (2) the correct 
development and assessment of the resulting models5,13. Successful 
ML applications extract generic principles from today’s data, allow-
ing the generalization—that is, accurate prediction—for tomorrow’s 
data. This needs proper extraction and processing of data and fea-
tures often requiring expert knowledge14–16. The development and 
application of ML models to the life sciences needs expertise from 
both computational and biological/medical fields. In contrast, ML 
applications to areas such as object and speech recognition or com-
plex games (including chess and Go/Weiqi) for which task and suc-
cess are more clearly defined require mainly expertise in ML.

Collaborations across fields of expertise
Throughout science, interdisciplinarity has become important to 
break new grounds17,18. Several recent studies17,19–24 investigated 
the role of interdisciplinarity by automatically extracting tens and 
hundreds of thousands of publications (for example, from Web of 
Science or the Proceedings of the National Academy of Sciences). 
Toward this end, one definition of interdisciplinarity is as follows: 
if an article is published and cited in different fields or subfields (for 
example, the US National Science Foundation classifies journals 
into 14 different disciplines and 143 subdisciplines17,21), the article 
is deemed ‘interdisciplinary’17,21,24. Others define interdisciplinary as 
articles published by authors from different disciplines, an approach 
so far limited to Italian scientists due to a public directory mapping 
Italian researchers to disciplines19,20.

The scientific impact of an article is usually measured by its 
number of citations17,24. To correct for field- and journal-specific 
effects, that number is normalized by time (years since publication) 
and by the journal’s impact factor23,24. Since the impact factor is cal-
culated from the number of citations of articles published in this 
journal25, articles from higher-ranked journals are expected to have 
higher citation counts.

All those automated studies allowed the assessment of many 
articles while being limited to the extraction of only a particular 
type of information. The studies disagree in their findings regard-
ing the importance of interdisciplinary collaborations: one finds no 
consistent correlation between impact and interdisciplinarity from 
sampling over 750,000 publications: for some disciplines, interdis-
ciplinarity was proportional to citations; for others (including phys-
ics) the relation was reversed24. Another work, focusing on more 
than 15,000 publications from physics, found interdisciplinarity 
was proportional to citation rates but only when published in jour-
nals with citation rates below average23. Yet other studies, based on 
751,76617 and 71,633 publications20, agreed that interdisciplinary 
work creates higher impact than non-interdisciplinary work. Also, 
specific collaborations between scientists from related fields lead 
to higher-impact publications than generic collaborations between 
scientists from very different fields20. Clearly, there is no simple 
common thread running through all of those findings. However, 
what made us revisit this question and begin our analysis were three 
other reasons: (1) the focus on ML and the life sciences, not explic-
itly covered by others; (2) the aim of separating the analysis of scien-
tific quality (soundness) from impact; and (3) the introduction of a 
more rigorous definition of interdisciplinarity—instead of proxying 
by the number of disciplines citing a work, we require experts from 
different disciplines to co-author a work, a definition similar to the 
one used for the analysis of Italian authors19,20.

Focus of this work
Here, we assessed several aspects of ML applications in the life sci-
ences. We started with the selection of 17 journals representing com-
putational/experimental biology and medicine (see Supplementary 
Information). Among all papers published in those 17 journals in 
the years 2011–2016, keyword searches (Supplementary Table 1) 

matched 4,306 articles, where about 2,100 of those were deemed 
correct hits based on the observed false positive rate for a sub-
set of articles. From those, initially 250 were randomly selected 
(see Supplementary Information; complete list in Supplementary 
Dataset 1, list of identified falsely extracted articles is provided 
in Supplementary Dataset 2). Subsequently, we applied the same 
selection process and chose another 50 papers from 2018 to verify 
that the major findings have not changed through the most recent 
advent of deep learning9,10. In contrast to previous studies17,19–24, our 
assessment focused on ML applications in the life sciences and all 
information was manually extracted from the articles. This allowed, 
for instance, to correct the 50% false positives from the keyword 
searches, and also to define interdisciplinarity through the authors’ 
scientific backgrounds by reading partial CVs for 1,918 authors of 
the 250 papers. Each article was classified independently by two of 
us. These investments limited the number of papers analysed but 
allowed a more fine-grained assessment not accessible to automatic 
extraction.

Our focus had several implications, including that all papers 
reported applications of ML to the life sciences, as opposed to more 
theoretical treatments. In some sense, the application of ML (com-
putational sciences) to the life sciences is by definition interdisci-
plinary. Thus, we could sharpen the perspective by distinguishing 
the expertise contributing to the application of ML to the life sci-
ences with authors from potentially three disciplines: computa-
tional sciences, biology and medicine (expertise of author verified 
through CV, not through affiliation). The number of different disci-
plines presented in the author list proxied the level of interdisciplin-
arity with values from 1 to 3.

We proxied the validity of papers describing the application of 
ML methods to biology and medicine through six different indi-
cators. The first four relate to whether the method was assessed 
in ways needed to ascertain that it works as promised (or at all). 
We asked: did the authors use cross-validation or other evaluation 
methods (V1: binary value), more than one single measure for per-
formance (V2: integer), additional test sets (V3: binary value) or 
experimental verification (V4: binary value)? While method evalu-
ation might correctly estimate performance for unseen data with-
out V4, it appears impossible to accomplish this simple objective 
without V1–V3, let alone to develop the best possible method. The 
last two indicators related to sharing methods and results. These 
were sharing data (V5), programmes and codes (V6) through pub-
licly available sites. Typically, reviewing ML applications by journal 
reviewers and the public at large requires availability of data and 
programmes in a form beyond what is available through description 
of methods.

The correct application of ML requires expertise from those 
familiar with ML and those familiar with the life sciences, that is, 
different disciplines. Thus, we hypothesized articles written by 
research teams from different disciplines to be more likely to report 
the necessary evaluation methods ensuring proper implementation 
of ML methods, to make their data publicly available so others could 
validate their results, and, subsequently, to be accepted in higher-
ranked journals and have more citations.

Results and discussion
Three levels of interdisciplinarity. By definition, all the papers 
analysed applied methods from computational fields to the life sci-
ences—that is, were intrinsically interdisciplinary. All 250 papers 
analysed might have been considered interdisciplinary by auto-
mated analyses checking from which field/discipline the article was 
quoted. To generate a more detailed lens, we distinguished three 
disciplines (computational scientists, biologists and physicians) 
and introduced interdisciplinarity as a number ranging from one 
to three depending on how many disciplines were represented by 
the authors of the work. Most of the 250 papers were co-authored 
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by two disciplines (one, 27%; two, 53%; three, 20%). Given these 
levels, we could classify all papers according to their level of inter-
disciplinarity and differentially analyse the key indicators: validity 
(evaluation and sharing) and impact (number of citations (NC); 
NC adjusted by year, equation (1) in Supplementary Information; 
impact factor, and NC adjusted by year and impact factor, equation 
(2) in Supplementary Information).

58% of the chosen 250 papers (see Supplementary Information 
for more details on how these articles were selected) appeared in only 
four of the 17 journals (by occurrence: Bioinformatics, Proceedings 
of the National Academy of Sciences, PLOS Computational Biology 
and BMC Bioinformatics; see additional results in Supplementary 
Information, including Supplementary Figs. 1, 2, 3 and 4, for 
more details)—that is, were 2.5-fold over-represented. While the 
disciplines of biologist and physician correlated positively with 
impact factor (ρ = 0.30/p-value < 0.001, ρ = 0.26/p-value < 0.001, 
respectively), computational science correlated negatively (ρ = 
–0.30/p-value < 0.001; Fig. 1). Computational scientists might focus 
more on methods, while biologists and physicians focus more on 
new data that tend to be highly cited in the life sciences.

Scientific validity higher with experts participating in collabo-
ration. Evaluation methods (for example, cross-validation), usage 
of independent test sets, and/or experimental proofs reduce the 

chance of overfitting and enhance the applicability of the model 
to future data. Indeed, 80% of the articles with only computational 
authors applied some evaluation methods or independent tests; 
compared to 41% of those written by ‘experimentalists’ (biologists 
and physicians; Fig. 2a). However, most articles written solely by 
experimentalists provided experimental proof (55%), so did 16% 
of those from only computational co-authors (Fig. 2a). The cor-
responding numbers for interdisciplinary collaborations between 
computational and experimental scientists (level of interdiscipli-
narity ≥ 2) were between these two extremes: 67% evaluated their 
methods and 43% provided experimental proof, suggesting that 
such collaborations facilitate experimental and computational 
validation. On the flip side, 19% of all articles did not provide any 
evaluation; this number rose as high as 34% without computational 
co-authors (Fig. 2a).

Several evaluation metrics are required to assess the perfor-
mance of ML applications (for example, precision, recall, accuracy 
or confusion matrices). 6% of all articles used no evaluation metric, 
53% used one or two, and 6% used over five (Supplementary Fig. 5).  
Although more metrics do not necessarily imply better assessment, 
even for binary predictions (separation of two classes/classifica-
tions), we have to consider the predictive power of the model for 
both classes separately—that is, minimally we need two evaluation 
metrics. More complex problems require more evaluation metrics. 
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Fig. 1 | Spearman correlation coefficients for numeric and binary variables. Correlation between the different criteria of 250 articles using the Spearman 
correlation tested at a significance level of 0.05. Significant p-values are displayed using * for p-value < 0.05, ** for p-value < 0.01 and *** for p-value < 
0.001 after adjusting for multiple testing using the Benjamin–Hochberg procedure. Blank squares denote that the correlation is non-significant. Citations 
adj. (year) and citations adj. (year and imp. fct.) denote the citations adjusted by year and by year and impact factor, respectively.
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Typically, clearly more than two metrics are needed to show differ-
ent strengths and weaknesses of a prediction method.

About half (52%) of the methods were compared to others; this 
again dropped to 21% without computational co-authors (p-value = 
0.001; Fig. 2b). Although crucial for validation, method comparisons 
might make descriptions more complex, leading to rejection from 
higher-ranked journals (Fig. 3c) and possibly to lower impact (Fig. 3c),  
although adjusting by impact factor as well suggested a slight pay-off 
from method comparisons in terms of citations (Fig. 3b).

Reproducibility is a pillar of science26–28, partially relying on 
making data and methods publicly available. It is particularly criti-
cal for ML applications because many minor technical details may 
invalidate results25. Overall, 64% of the articles shared their data 
(with large variation between journals: from Nucleic Acids Research 
= 89% to New England Journal of Medicine = 8%; Supplementary 
Fig. 6), reflecting the general trend that articles from medicine 
shared data the least (Supplementary Fig. 7). We could not establish 
whether this is related to sensitive patient data. While all journals 
encourage data sharing, many do not enforce it.

Overall, 68% of the articles with computational scientists shared 
data, opposed to 31% without (p-value < 0.001; Fig. 2b). 57% of the 
articles relied on data extracted from public resources or previous 
articles; however, 22% of those that did, did not publish their data. 

Data sharing was highest for collaborations with computer scien-
tists (Fig. 2b).

Experimentalists might benefit from colleagues with knowledge 
in computer science to add evaluation methods, bring a greater 
variety of tools, and help with the interpretation of the scientific and 
statistical significance of results, therefore focusing more on techni-
cal aspects; while computational scientists benefit from the access to 
new data, domain knowledge and experimental verification of the 
results. Therefore, collaborative work will generate more scientifi-
cally sound and impactful work.

Collaborations of scientists with different expertise were some-
how cited more often. Interdisciplinary collaborations of research-
ers from different fields seem increasingly important to generate 
new ideas and results29,30. The higher the level of interdisciplinarity, 
the higher the NC adjusted by year (ρ = 0.22, p-value = 0.02; Fig. 1, 
Supplementary Fig. 8) and the higher the impact factor (ρ = 0.24, 
p-value = 0.002; Fig. 1, Supplementary Fig. 8). When adjusting NC 
by impact factor as well, the correlation was no longer significant 
(Fig. 1, Supplementary Fig. 8), suggesting that interdisciplinary arti-
cles were cited more mainly because they were published in higher-
ranked journals (Supplementary Fig. 8). The correlation between 
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impact factor and level of interdisciplinarity (Supplementary Fig. 8) 
suggested that authors profit from collaborations.

Closer analysis of the correlation between interdisciplinarity and 
impact refined the message: distinguishing just two groups (com-
putational and experimental), revealed NC to be higher for research 
teams of only experimental scientists (Fig. 4a). The results for 
impact factor and NC adjusted by impact factor and year suggested 
that the higher NC originated essentially from experimentalists 
publishing in higher-ranked journals (Fig. 4b,c). For research teams 

with only computational expertise, contributions from experimen-
talists can help to add new data, find biologically relevant applica-
tions and interpretations of the results, and increase the relevance 
of ML applications leading to more visibility of conducted research 
because it might be accepted in higher-ranked journals.

Did scientific validity (evaluation and sharing) correlate with 
impact? Computational evaluations correlated negatively with 
the impact factor (ρ = –0.31, p-value < 0.001); using no evalua-
tion method correlated positively with the impact factor (ρ = 0.23, 
p-value = 0.004), but we could not detect a significant relationship 
between impact factor and experimental proof (Fig. 1). Since all 
articles analysed here focus on applications, the absence of proper 
evaluation—independent of the focus of a paper—clearly contra-
dicts good scientific conduct.

Data sharing was not rewarded by increases in NC adjusted by 
year (Fig. 3a), although adjusting by impact factor as well hinted 
at a tendency for sharing to lead to more citations (Fig. 3b). Thus, 
although data sharing is crucial to ascertain validity and reproduc-
ibility, it is not incentivized by increased visibility. In fact, there was 
no significant difference in the impact factor (Fig. 3c).

Software sharing also did not correlate with NC adjusted by year 
(Fig. 3a); the trend changed toward more cited when adjusting NC 
by impact factor as well (Fig. 3b). On the contrary, not sharing soft-
ware seemed to lead to acceptance of articles in higher-ranked jour-
nals, but again the difference was not significant (Fig. 3c). Certainly, 
method sharing is crucial for reproducibility and for the impact of 
a method on science. Therefore, we were surprised that programme 
sharing appeared neither crucial for visibility nor acceptance in 
the research community as proxied by citations and journal rank. 
Ultimately, this might shed light on the limitations of such measures 
to evaluate scientific impact.

More computational scientists involved in 2018. AI and ML are 
so rapidly evolving that papers published from 2011–2016 might 
simply not be up to date enough to capture the newest trends. We 
attempted to address this issue by analysing another 50 articles 
describing ML applications to the life sciences published in 2018 
(selected and analysed largely by the same criteria as the other 
250; see Supplementary Information for details; complete list in 
Supplementary Dataset 3). The major differences were: fewer 
publications without computational scientists (6% 2018 versus 
12% 2011–2016), and programme sharing rose (70% versus 50%). 
Although data sharing did not change significantly (68% versus 
64%), those papers that shared data were cited more often and 
accepted to higher-ranked journals, but we could not detect a sig-
nificant difference (Supplementary Fig. 9). Other aspects also did 
not change, neither the fact that papers sharing programmes tended 
to be published in lower-ranked journals (Supplementary Fig. 6) 
nor the correlation between number of involved disciplines and the 
proxies for impact (for example, NC adjusted by year, impact factor, 
and NC adjusted by year and impact factor). Overall, the most sub-
stantial change was that computational scientists contributed more 
often in 2018. This might reflect the increasing complexity of real-
izing ever more popular deep learning-type solutions of ML.

Limitations. Although our analysis revealed interesting insights, 
some issues remain to be addressed in the future. First, thoroughly 
analysing more than 300 articles will render the conclusions more 
valid. Second, we proxied impact and visibility through number 
of citations and the impact factor. However, the number of cita-
tions can be influenced by other factors that can seem superficial 
and can be controlled by the authors31, and it is hard to compen-
sate for these ones. Using the impact factor for measuring scientific 
impact has been criticized in the literature and the increasing use 
of social media might increase the visibility of research indepen-
dent of the journal’s impact factor32,33. Third, the scope of a journal 
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Fig. 4 | Number of citations and impact factor not consistently higher 
for collaborations. Boxplots of adjusted citations and log10-transformed 
impact factor of 250 articles split by authors’ backgrounds. Vertical bars 
indicate largest (smallest) value within 1.5 times the interquartile range 
above (below) the third (first) quartile. a, The number of citations adjusted 
by year was slightly higher for articles solely written by experimentalists 
compared to articles involving computational scientists. b, Adjusting by 
impact factor as well removed this difference. This suggests that the higher 
number of citations for experimentalists was mainly caused by the fact 
that their work got accepted in higher-ranked journals. c, Impact factor was 
higher for articles only published by experimentalists (biologists and/or 
physicians) than for articles with computational scientists.
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might influence the description of ML applications. Journals focus-
ing on methodologies are more likely to require certain standards in 
ML; those focusing on biologically and medically relevant novelties 
are less likely to specifically ask for methodological details. Fourth, 
we considered any publicly available information to assign author 
disciplines but could not account for paid statisticians not listed as 
authors. A variety of medical scientists from pathologists to clini-
cians were all simplified as physician, ignoring large differences in 
scientific training. These simplifications might lead to underesti-
mating computational expertise in publications. Furthermore, we 
considered data and programme availability as stated in the articles 
but did not attempt to contact authors to obtain those if not avail-
able. Finally, since several aspects in our analysis that correlated 
with the impact factor also correlated with each other, confounding 
factors might influence the results and these interrelationships are 
difficult to separate.

Conclusions
We analysed 250 articles describing ML applications to the life sci-
ences published 2011–2016 and another 50 articles published in 
2018 in 17 journals from 24 different biological/medical fields (see 
Supplementary Information for more information). This diver-
sity of fields was mirrored by the diversity of how ML was applied. 
Reproducibility and correct evaluation of results are crucial to ascer-
tain validity and reliability of ML applications. Surprisingly, many 
articles did not focus on these aspects: 50% shared no software, 36% 
shared no data, and 19% applied no evaluation. In fact, an entire third 
(34%) of the articles only written by experimentalists described no 
evaluation. While we hypothesized that ensuring validity of ML appli-
cations would be necessary to achieve high visibility of the research, 
we found the opposite: more valid work was often published in lower-
ranked journals, attracting fewer citations (Fig. 1, Fig. 3).

In general, how these technical aspects were addressed was 
highly influenced by the authors’ scientific backgrounds: reproduc-
ibility and evaluation were more prominent with computational 
scientists as co-authors (Fig. 2), while articles co-authored by exper-
imentalists more frequently provided experimental proof (Fig. 2). 
Thus, collaborations of authors from different disciplines provided 
more opportunity for higher-quality results integrating knowledge 
from various fields of expertise.

We hypothesized that collaborative research should also be cited 
more often and be accepted in higher-ranked journals. However, 
this was only true for computational scientists who profited from 
collaborating with experimentalists by getting accepted in higher 
impact factor journals (Fig. 4c).

One of the most substantial challenges for ML is a comprehen-
sive, adequate evaluation; incorrect application of such tools can 
lead to drawing false conclusions or to overestimating the predic-
tive power of a method. Collaborations between computational and 
experimental scientists substantially increased the correctness of 
evaluations and the likelihood of reproducibility. Thus, interdisci-
plinary collaborations increased the scientific validity of published 
research. As the enforcement of data and programme transparency 
will increase, ML methods in biology and medicine will have to 
be implemented more carefully. While using the impact factor to 
measure the success of a scientific article currently does not show 
an advantage of collaborations for experimental scientists (Fig. 4c), 
we suggest that these collaborations will become more frequent and 
impactful in the near future.

Received: 9 August 2019; Accepted: 6 December 2019;  
Published online: 13 January 2020

References
	1.	 Bleicher, K. H., Bohm, H. J., Muller, K. & Alanine, A. I. Hit and lead 

generation: beyond high-throughput screening. Nat. Rev. Drug. Discov. 2, 
369–378 (2003).

	2.	 Sulakhe, D. et al. High-throughput translational medicine: challenges and 
solutions. Adv. Exp. Med. Biol. 799, 39–67 (2014).

	3.	 Howard, J. Quantitative cell biology: the essential role of theory. Mol. Biol. 
Cell. 25, 3438–3440 (2014).

	4.	 Cook, C. E. et al. The European Bioinformatics Institute in 2016: data growth 
and integration. Nucl. Acids Res. 44, D20–26 (2016).

	5.	 Chicco, D. Ten quick tips for machine learning in computational biology. 
BioData Mining 10, 35 (2017).

	6.	 Cios, K. J., Kurgan, L. A. & Reformat, M. Machine learning in the life 
sciences. IEEE Eng. Med. Biol. Mag. 26, 14–16 (2007).

	7.	 Google Trends. Google https://trends.google.de/trends (2019).
	8.	 Rost, B., Radivojac, P. & Bromberg, Y. Protein function in precision  

medicine: deep understanding with machine learning. FEBS Lett. 590, 
2327–2341 (2016).

	9.	 Webb, S. Deep learning for biology. Nature 554, 555–557 (2018).
	10.	Min, S., Lee, B. & Yoon, S. Deep learning in bioinformatics. Brief. Bioinform. 

18, 851–869 (2017).
	11.	Larranaga, P. et al. Machine learning in bioinformatics. Brief. Bioinform. 7, 

86–112 (2006).
	12.	Frank, M. R., Wang, D., Cebrian, M. & Rahwan, I. The evolution of citation 

graphs in artificial intelligence research. Nat. Mach. Intell. 1, 79–85 (2019).
	13.	Domingos, P. A few useful things to know about machine learning. Commun. 

ACM 55, 78–87 (2012).
	14.	Chou, K.-C. Some remarks on protein attribute prediction and pseudo amino 

acid composition. J. Theor. Biol. 273, 236–247 (2011).
	15.	Ioannidis, J. P. et al. Increasing value and reducing waste in research design, 

conduct, and analysis. Lancet 383, 166–175 (2014).
	16.	Gron, A. Hands-On Machine Learning with Scikit-Learn and  

TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems 
(O’Reilly Media, 2017).

	17.	Chen, S., Arsenault, C. & Larivière, V. Are top-cited papers more 
interdisciplinary? J. Informetr. 9, 1034–1046 (2015).

	18.	Cummings, J. & Kiesler, S. Organization theory and the changing nature of 
science. J. Org. Des. 3, 1–16 (2014).

	19.	Abramo, G., D’Angelo, C. A. & Di Costa, F. Authorship analysis of specialized 
vs diversified research output. J. Informetr. 13, 564–573 (2019).

	20.	Abramo, G., D’Angelo, C. A. & Di Costa, F. Do interdisciplinary research 
teams deliver higher gains to science? Scientometrics 111, 317–336 (2017).

	21.	Chen, S., Arsenault, C., Gingras, Y. & Larivière, V. Exploring the 
interdisciplinary evolution of a discipline: the case of biochemistry and 
molecular biology. Scientometrics 102, 1307–1323 (2015).

	22.	Xie, Z., Li, M., Li, J., Duan, X. & Ouyang, Z. Feature analysis of 
multidisciplinary scientific collaboration patterns based on PNAS. EPJ Data 
Sci. 7, 5 (2018).

	23.	Rinia, E. J., van Leeuwen, T. N. & van Raan, A. F. J. Impact measures of 
interdisciplinary research in physics. Scientometrics 53, 241–248 (2002).

	24.	Larivière, V. & Gingras, Y. On the relationship between interdisciplinarity and 
scientific impact. J. Am. Soc. Inform. Sci. Technol. 61, 126–131 (2010).

	25.	Wallach, J. D., Boyack, K. W. & Ioannidis, J. P. A. Reproducible research 
practices, transparency, and open access data in the biomedical literature, 
2015–2017. PLoS Biol. 16, e2006930 (2018).

	26.	Berger, B. et al. ISCB’s initial reaction to the New England Journal of 
Medicine editorial on data sharing. PLoS Comput. Biol. 12, e1004816 (2016).

	27.	Drazen, J. M. Data sharing and the journal. N. Engl. J. Med. 374,  
e24 (2016).

	28.	Longo, D. L. & Drazen, J. M. Data sharing. N. Engl. J. Med. 374,  
276–277 (2016).

	29.	Mind meld. Nature 525, 289–290 (2015).
	30.	Nissani, M. Ten cheers for interdisciplinarity: the case for interdisciplinary 

knowledge and research. Soc. Sci. J. 34, 201–216 (1997).
	31.	van Wesel, M., Wyatt, S. & ten Haaf, J. What a difference a colon makes: how 

superficial factors. Scientometrics 98, 1601–1615 (2014).
	32.	Fitzgerald, R. T. & Radmanesh, A. Social media and research visibility. Am. J. 

Neuroradiol. 36, 637 (2015).
	33.	Patton, R. M., Stahl, C. G. & Wells, J. C. Measuring scientific impact beyond 

citation counts. D-Lib Magazine 22, 5 (2016).

Acknowledgements
Thanks to T. Karl and I. Weise (both TUM) for invaluable help with technical and 
administrative aspects of this work. Thanks to the TUM Graduate School (in particular 
Z. Zhang) for organizing the summer school, to the TUM (in particular H. Keidel and 
W. Herrmann) for substantial support on several levels including financing the summer 
school, to the Weizmann Institute, Tel Aviv University, Technion and Hebrew University 
for financial and general support; thanks also to the enlightening talks by D. Cremers 
(TUM), M. Linial (IAS Israel, Hebrew University), Y. Ofran (Bar-Ilan University); 
thanks to PubMed for providing easy access to published articles and supporting 
automatic access; thanks to the maintainers of Biopython for providing excellent code 
to access various databases and process biological data. Last, but not least, thanks to all 
maintainers of public databases and to all experimentalists who enabled this analysis by 

Nature Machine Intelligence | VOL 2 | January 2020 | 18–24 | www.nature.com/natmachintell 23

https://trends.google.de/trends
http://www.nature.com/natmachintell


Perspective NATure MAchIne InTeLLIgence

making their data publicly available. This work was supported by grant no. 640508 from 
the Deutsche Forschungsgemeinschaft (DFG).

Author contributions
M.L. and K.S. performed the major part of data analysis and of writing the manuscript. 
M.L. created and adapted the predefined list of articles. K.S. generated figures and 
performed statistical tests. L.C. assisted in finding interesting correlations in the data  
by performing complex analyses and statistical test and in generating figures. M.L., K.S., 
L.C., Y.F., P.H, E.K., A.M., K.Q., A.R., S.S., A.S., L.S. and A. D.-W. participated in the 
summer school where the idea for this work was developed, were involved in agreeing  
on the goals and analysis methods of this work, were involved in data analysis 
by collecting data from the predefined list of articles, and assisted in writing the 
manuscript. M.L., K.S. and A.M. collected the data for 2018. N.B.-T., M.Y.N, D.R. and 
B.W.S. supervised the work over the entire time and proofread the manuscript. D.A. 
provided valuable comments, especially regarding statistical analysis and was involved 
in manuscript writing. T.H. and B.R. initiated and supervised the summer school where 
the idea for this project was developed. T.H. provided important comments to refine the 

analysis and contributed to manuscript writing. B.R. supervised and guided the work 
over the entire time and proofread the manuscript. All authors read and approved the 
final manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/
s42256-019-0139-8.

Correspondence should be addressed to M.L. or K.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2020

Nature Machine Intelligence | VOL 2 | January 2020 | 18–24 | www.nature.com/natmachintell24

https://doi.org/10.1038/s42256-019-0139-8
https://doi.org/10.1038/s42256-019-0139-8
http://www.nature.com/reprints
http://www.nature.com/natmachintell

	Validity of machine learning in biology and medicine increased through collaborations across fields of expertise

	Collaborations across fields of expertise

	Focus of this work

	Results and discussion

	Three levels of interdisciplinarity. 
	Scientific validity higher with experts participating in collaboration. 
	Collaborations of scientists with different expertise were somehow cited more often. 
	More computational scientists involved in 2018. 
	Limitations. 

	Conclusions

	Acknowledgements

	Fig. 1 Spearman correlation coefficients for numeric and binary variables.
	Fig. 2 Method validation, comparison and data and programme sharing depends on author expertise.
	Fig. 3 Sharing and method comparison hardly impact citations.
	Fig. 4 Number of citations and impact factor not consistently higher for collaborations.




