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ABSTRACT: Deep mutational scanning enables examination of the
effects of many mutations at each amino acid position in a query
protein, readily disclosing positions that are particularly sensitive.
Mutations in these positions alter protein function the most. Here,
on the premise that dynamics underlie function, we explore to what
extent the measured sensitivity to mutations could be linked to—
perhaps be explained by—the structural dynamics of the protein.
We employ a minimalist perturbation—response approach based on
the Gaussian Network Model (GNM) on a data set of seven
proteins with deep mutational scanning data. The analysis shows
that the mutation-sensitive positions are often of capacity to
modulate the global dynamics and to intermediate allosteric
interactions in the structure. With that, upon strain perturbation,

ACRE

these positions decrease residue fluctuations the most, affecting function via entropy changes. This is particularly relevant for
positions that are distant from binding sites or other functional regions of the protein and are sensitive to mutations, nevertheless.
Our results indicate that mutations in these positions allosterically manipulate protein function.

Bl INTRODUCTION

DNA replication is a highly accurate process that consists of
many control and repair mechanisms. Nevertheless, it is
imperfect, rendering DNA susceptible to mutations in each
replication. In addition, outside factors (chemicals, radiation,
etc.) may cause mutations. Nonsynonymous (amino acids
changing) mutations in DNA have a wide range of
consequences. They may have no effect at all, result in gain/
loss of function, or be catastrophic by preventing proper
folding."~® Mutations leading to loss of function and/or
diseases (loss of fitness) are called deleterious.” Their
prediction is rather complicated even for proteins of known
structure because of the high level of noise in mutational data’
and because it is difficult to accurately calculate changes in
structural stability and dynamics.®”®

Until recently, experimental studies regarding the con-
sequences of mutations were limited to the low amount of
mutations. This has changed with the emergence of the high-
throughput and massively parallel deep sequencing, also known
as next generation sequencing (NGS), which revolutionarily
impacts genomics.9’10 It enables sequencing an entire human
genome in a single day, whereas it would take almost a decade
with traditional Sanger sequencing.'’ Small fragments of DNA
sequenced multiple times and in parallel provides highly
accurate data on DNA variations. Deep sequencing studies can
be used to evaluate mutation effects on different protein
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functional activities such as binding to ligands, other proteins,
or nucleotides, and also to evaluate enzymatic activities like
ubiquitination or phosphorylation.”'”'* Sequence-to-function
mapping provides enormous opportunity to reveal how
intrinsic structural and dynamic behavior impact protein
function.

There are numerous computational tools to predict the
effect of single point mutations, which use various kinds of
evolutionary and biophysical data. Mutations in highly
conserved positions are often deleterious."” Thus, ConSurf
calculations may help detecting deleterious mutations.'* Some
methods like Provean'® and SIFT'® use amino acid
substitution matrixes, whereas others, such as VIPUR,"
Polyphen-Z,18 SNAP,"” MuD,”® and Pro-Maya21 use bio-
physical characteristics in addition to evolutionary data. There
are also some methods, namely, DEOGEN?* and SusPect,
which also integrate protein—protein interactions data to their
prediction algorithms. On the other hand, EVmutation®* and
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DeepSequence25 use sequence covariation data to predict
fitness effect of mutations and compare their predictions with
deep sequencing data. Envision”® uses the deep sequencing to
predict mutational effects on other proteins in different
organisms. Additionally, there are methods that focus on the
mutations’ energetic effect such as FoldX”’ or rely on
molecular dynamics simulations®*” and elastic network
models®*™** to study mutations and allosteric interactions in
perturbation—response schemes.

The success of dynamics-based approach to rationalize deep
sequencing data is most relevant to the current study. Indeed,
concepts and computational tools, from two-state conforma-
tional models to the dynamical conformational ensembles,
have contributed a lot to our understanding of allosteric
mechanisms.'***™>” For example, allosteric regulation has
been explained in terms of the population shift model, and
preexisting pathways in the free energy landscape.”® ** Along
these lines, elastic network models consider ensemble of
conformations accessible around the native state of the protein,
i.e, the global minimum of the free energy landscape,
highlighting the importance of global modes in driving
allosteric pathways, e.g, between binding sites.””™** Global
fluctuation changes as a result of variations in the internal
dynamics appear as a mechanism of dynamic allostersy in the
absence of conformational/structural changes.**** 7>

Here, we explore the ability of a minimalistic perturbation—
response approach to reveal mutation-sensitive residues based
on their effect on protein dynamics. For this, we conduct
Gaussian Network Model (GNM) based analysis of a data set
of seven selected proteins and correlate the results with deep
mutational scanning data.”®>” GNM describes the protein
structure as an elastic network of Ca atoms connected by
strings, assuming harmonic interactions.®*™® To mimic the
effect of a mutation, a perturbation is introduced on each
residue by increasing/decreasing the strain in the respective
springs of the elastic network, and the response is analyzed
with respect to the changes in residue fluctuations.

B MATERIALS AND METHODS

Deep Sequencing Data Set. A data set of seven proteins
with deep mutational scanning data is assembled; PSD9S,
CcdB, GAL4 DNA binding region, PABI-RRM2 domain,
ubiquitin, TEM1 f-lactamase, and GTPase H-Ras*> >’ (Table
1). The deep sequencing data are summarized as an average
functional cost, which amounts to the average effect of all

Table 1. DeepSequencing Data Set

crystal
structure
structure (PDB ID) studied criteria notes
PSD95-PDZ 1BE9 ligand binding residues from 311 to
Domain®* 393
CcdB™? 2VUB toxin activity
GAL4 - DNA 1D66 nucleotide binding  included the DNA
bindin&
region”’
PAB1-RRM2 4F02 ligand/nucleotide  excluded the RNA
domain’’ binding growth Included the IF
rate elF4G
Ubiquitin®® 1UBQ growth rate residues from 1 to 73
TEMI (- 1XPB enzyme activity
lactamase)*®
H-Ras 3K8Y ligand binding/
GTPase™ growth rate

mutations in an amino acid position on the specific activity
(i.e, binding, enzymatic activity, etc.) of each protein in the
set. The average functional costs for the seven proteins, used as
our gold standard, are plotted in ranked order in Figures S1—
S7. A number of mutation-sensitive positions with the highest
functional costs are selected for the analysis of each protein in
the data set. These are listed in Table 2. This arbitrary
selection is complemented by considering different tiers of
functional costs.

PSD95-PDZ Domain. Mutation sensitivity of positions are
obtained with respect to ligand binding affinity. The ligand
CRIPT is quantitatively linked to the expression of enhanced
green fluorescent protein (eGFP). eGFP levels are measured
and compared to wild type to get the average functional cost of
amino acid substitutions.”

CcdB. When mutation sensitivity is considered, active/
inactive phenotype data are used. WI CcdB shows an active
phenotype when cells are killed and an inactive phonotype
when cells survive. The survivability of cells is thus a measure
of the mutation sensitivity of each position.”

GAL4—DNA Binding Domain. GAL4 binding to the DNA
activates HIS3 expression, promoting cell survival.’’ Thus,
mutation sensitivity is based on the survivability of cells
depending on GAL4 binding to DNA.

PAB1-RRM2 Domain. Functional cost is based on the
binding affinity of PAB-1 to initiation factor eIF4G.”

Ubiquitin. Mutation sensitivity of each position is obtained
from the fitness landscape of all possible single mutations of
ubiquitin in the presence of dimethyl sulfoxide.>®

TEM1 p-Lactamase. Mutation-sensitive positions are
determined from the fitness landscape of f-lactamase in the
presence of ampicillin.*® A special k* score is provided, which
is inversely proportional to fitness scores of mutations for each
position. Position 3 is not available in the crystal structure.

GTPase H-Ras. The activity of the GTPase domain of the
H-Ras protein is regulated by GAPs and GEFs. Thus,
mutations in GTPase H-Ras positions are evaluated through
their effect on bacterial growth in the presence of an antibiotic
under GAP and GEF.””

GNM and GNM-Based Mode Perturbation Analysis. In
the Gaussian Network Model (GNM),*”®" the equilibrium
correlation between fluctuations of two a carbons i and j is
given by

(AR;AR)) = [%—bT][r‘lL,-
14 (1)

where I' is a symmetric matrix known as Kirchhoff
(connectivity) matrix, T is the absolute temperature, and k;
is the Boltzmann constant. y is the force constant of the
Hookean pairwise potential that represents the interactions
between the residues in the folded structure. The elements of
I are given by

-1 ifi;éjandRierc
I 0 ifi #jandR; > r,
ij
—Z L, ifi=
it @)

where R;; is the distance between the ith and jth C, atoms and
r. is a distance threshold below which they interact. The
inverse of I' can be decomposed into its eigenvectors U and
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Figure 1. Cumulative residue fluctuation difference profile upon strain perturbation of each position in the PSD9S-PDZ domain, calculated using
the three slowest modes. (A) Fluctuation differences per position as a function of the amino acid index. Mutation-sensitive positions, detected using
the deep sequencing data, are marked as red asterisks, and binding site residues as green asterisks. (Binding site information is obtained from the
crystal structure (PDB ID: 1BE9) entry in PDBsum®’). (B) Mapping of the fluctuation differences on the structure of the domain using the blue-
white-red color-code palette. The mutation-sensitive positions are indicated using space-filling models, and the bound peptide as green trace. (C) A
list of the mutation-sensitive positions and fluctuation difference minima. Overlapping residues are highlighted in bold and underlined.

the diagonal matrix of eigenvalues A, It is thus possible to
express eq 1 as the sum of the contributions from n — 1

individual modes, where n is the number of residues, as

(AR;AR)) = ( ][U(A‘I)UTJi,

Y
B (3ka)
Y

where k is the kth vibrational mode.®*®!

n—1

Z Mk_lukukT]ij

k=1

()

The modes are sorted
by their associated eigenvalues, such that mode number 1
renders the slowest and most collective motion, and mode n —
1 the fastest and most local motion. With that, the slowest
modes, which are generally linked to allostery,*® are most
relevant here. The minima of the square residue fluctuation
profile of the wu; eigenvector are the hinge residues that
coordinate the motion defined by the kth mode. These are the

sites where the sense of the correlation between the residue

fluctuation changes.64

In the GNM-based perturbation analysis, we assume that a
perturbation would affect every contact of selected residue;
thus, we change the force constant of the harmonic
interactions of the perturbed residue in the connectivity
matrix of GNM. This perturbation is given as adding a stiffness
(—€) or softening (+¢) for the interactions of each selected
residue p, otherwise being “—1” for all interacting residues, to
mimic a mutation as

—-lxe ifi=p#jandR; <

-1 ifi;ép,i#jandRijSVC
*ip =10 if i #jand R > r,

=)L ifi=

it )
% 3k, T s (A s 7T
(AR AR Y, = [ 252D g ar o,
n—1
3k, T
= ( b ) Z M*k_IU*kU*i]ij,p

Y Ji=1 (5)
where the conventional distance cutoff of r, = 10 A is selected

and a value of € = —0.2 is arbitrarily chosen.

This perturbation is repeated for each residue p and a new
connectivity matrix I'* is obtained for each repeat, providing
new eigenvectors u* and new eigenvalues A*. The change in
residue fluctuations between perturbed and unperturbed states,
i.e, the difference in cumulative residue fluctuations upon
perturbation on each residue p, is calculated as

#ofmodes—1 n

3k, T -
ACRE, = ( ; ] Z Z (1% lu*ku*kT]ii,p
k=1 =1

- [)“k_lukukT]ii)

(6)

Residue fluctuations are inversely proportional to eigenval-
ues and are mainly driven by the changes in eigenvalues. Strain
perturbation with € = —0.2 shifts the eigenvalues to larger

values that in return decrease cumulative residue fluctuations.

Changing this value to lower or higher negative values affects
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Figure 2. Mutation-sensitive positions often reside at or near hinges. (A) 3D representation of dynamic domains (red and blue) and hinge residues
(orange) of the three slowest GNM modes. Mutation-sensitive positions that overlap (cyan) or are in contact (magenta) with hinges are
highlighted. (B) Mapping of the same data on the amino acid sequence of the domain. (C) List of mutation-sensitive positions as overlapped or in

contact with hinge residues.

the magnitude of cumulative residue fluctuations. However, it
does not affect the profiles, and in particular the location of the
minima, which our analysis relies on.’”

In elastic network models, residue fluctuations are predicted
around the native state minimum and these fluctuations mainly
contribute to the entropy of the structure. Perturbation
modifies residue fluctuations around this minimum. The
eigenvalues of perturbed and unperturbed states can thus
directly be used to define the vibrational entropy difference
between the perturbed (p) and unperturbed (u) structure
around equilibrium as inversely proportional to eigenvalues in
logarithmic scale,*>°® approximated as

k=1

n—1
k=1 1/A’k,u

n—1 1 / )Nk‘p
ASP_u R In| —————
(7)
Here, in the case of constrained dynamics upon perturbation,
stiffening of the structure means a shift in the eigenvalues to
higher values (a steeper harmonic well), which in return leads
to negative entropy changes. Thus, the difference of residue

fluctuations around the native state upon perturbation directly
reflects the vibrational entropy change of the system.

When GNM is performed for protein—DNA complexes, the
C4’, C2, and P atoms of the nucleic acids are included as Ca
atoms.

Statistical Significance Analysis. The statistical significance
of the dynamic perturbation analysis is examined. Local/global
minima positions are considered when the results of the
cumulative amino acid fluctuation differences between
perturbed and unperturbed states are analyzed. Minima
positions are obtained via the “findpeaks” function of
MATLAB with the mean residue fluctuation difference values
as a threshold (MATLAB ver. R2018b). Then, the number of
position-sensitive residues overlapping with the minima and
their mean distances to the minima are calculated. Next,
random sampling is used to estimate the statistical significance
of the relationship between mutation-sensitive positions and
these minima. To this end, the same number of residues as that
of the mutation-sensitive positions is selected randomly 10 000
times. Z-scores are calculated as

https://doi.org/10.1021/acs.jpcb.1c02511
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_ X -p

2= ()

where X is the mean of the sample (mutation-sensitive
positions), y is the mean, and o is the standard deviation of the
population of random sampling. Then, p-values are calculated
using one-tailed ¢ test, where the goal is to estimate the
significance of the values in one tail of the distribution (e.g.,
the right tail in Figure 3A or the left tail in Figure 3B).

B RESULTS AND DISCUSSION

PSD95-PDZ Domain. As an exemplary case, the PSD9S-
PDZ domain is explored in depth using the GNM-based
perturbation analysis, as well as conventional GNM.

Global Dynamic Response. The difference in cumulative
residue fluctuations upon strain perturbation on each residue
calculated for the three slowest, the five slowest, the ten
slowest, and all-modes of motion display similar behavior. The
results for the three slowest modes are presented in detail in
Figure 1, and for the other mode selections in Figure S8. The
results clearly demonstrate that individual residues vary in their
dynamic effect, and that mutation-sensitive positions often
reside at or near local/global minima of the cumulative residue
fluctuation difference profile. The minima mark positions with
the highest capacity to stiffen the structure among their
sequence neighbors upon perturbation. That similar minima
locations are obtained using the four different mode selections
attests for the stability of the calculations, as well as the
importance of these positions in the global dynamics. The
correspondence between the mutation-sensitive positions and
these key dynamics determinants indicates that mutations in
these positions may harm the functional dynamics of the
domain. The linkage between sensitivity to mutations and
functional dynamics is further demonstrated by the correlation
between the average functional cost of all the mutations per
amino acid position with the cumulative residue fluctuation
difference profiles upon strain perturbation (Figure S9).

Mapping of the dynamic response (in the three slowest
modes) and the mutation-sensitive positions on the 3D
structure of the domain in complex with its ligand peptide
(Figure 1B) further manifests the correlation. Interestingly,
while some of the mutation-sensitive positions directly interact
with the ligand, others are far from the binding site. That some
of the latter are dynamics determinants may explain their
evident sensitivity to mutations.

Strain perturbation mainly shifts the eigenvalues to higher
values (Figure S10), which decreases residue fluctuations and
the global/vibrational entropy of the structure with higher
eigenvalues. Thus, roughly speaking, the peaks in the
cumulative eigenvalue difference profile (Figure S10) translate
into the dips in the cumulative residue fluctuation difference
profile (Figure 1). The overall entropy increase in response to
the rigid residue scan of a similar PDZ domain (PDZ2) was
previously discussed with reference to Le Chatelier’s (mass-
action) principle of chemical equilibrium.”” In this perspective,
the present results show that strain perturbation causes some
residues to increase their fluctuations, contributing to the
softening of the structure, but the net effect in dynamic
response is toward stiffening. Functionally unfavorable
mutation-sensitive residues lead to the net strongest stiffening
response upon strain perturbation. A constraint effect with
negative entropy difference was also mainly seen upon ligand
binding by the vibrational spectrum analysis of a large set of

protein—ligand complexes.”® Thus, the dynamic response of
perturbation also reveals the dynamic capacity of each
perturbed residue to change the entropy of the whole
structure. Residues with capacity to modulate global dynamics
facilitate allosteric interactions by causing other residues to
increase/decrease their fluctuations.””

Association with Hinges. To further expand and comple-
ment the above analysis, we perform conventional GNM
analysis on the PSD95-PDZ domain to observe the relation-
ship between mutation-sensitive positions and the global
modes’ hinges. Dynamic domains (red and blue) dissected by
hinge residues (orange) in each of the three slowest modes and
mutation-sensitive positions (spheres) are shown in Figure 2.
The hinge residues are at the minima of the square residue
fluctuations in the corresponding modes (Figure S11). As seen,
mutation-sensitive positions often reside at or right next to
hinge residues, which rationalizes their causal effect on global
fluctuations and function.*"**%7°~"7 The hinges are thus
mechanically important sites, coupled to the global dynamics
of the structure.”® Indeed, if the dynamic response to strain
perturbation is evaluated on the basis of the individual
behavior of each of the three slowest modes, the highest
dynamic response (Figure S12) is obtained upon strain
perturbation in the hinge residues (Figure S11). Because
some of the hinges are unique to individual modes, using the
average of the three slowest modes, as we do here (Figure 1),
requires taking into account also local minima in addition to
global minima.

Modulating Global Dynamics Intermediates Allosteric
Interactions. Global modes mainly driven by entropic effects
are particularly relevant for allosteric regulation.46 The
correspondence between the mutation-sensitive positions and
the hinges in the three slowest modes of PSD95-PDZ suggest
that they may mediate allosteric pathways linked to the ligand
binding site. Indeed, of the mutation-sensitive positions, 1336,
1341, A347, 1353, L367, A375, and 1388 are distant from the
ligand binding site and nevertheless correspond to minima of
the cumulative residue fluctuation difference profile (Figure 1).
The residues at minima here were also proposed to have
allosteric importance and participate in allosteric networks by
many other related studies.”” A pathway that includes H372,
1341, A347, 1353, 1327, and F32$ was identified by anisotropic
thermal diffusion model.*” All these positions, except H372,
reside in minima here (Figure 1). H372 is in the ligand binding
site and resides at a minimum when more modes of motion are
included (Figure S8). Statistical covariation analysis (SCA)
suggested an allosteric network from the ligand binding site
position H372 via A347, L353, V362, and V386 to position
F329.%" A347, L353, and V386 are at minima here and V362 is
right next to the minima at S361. Similarly, the intramolecular
allosteric network of F325, F340, 1341, V362 and E373, A376,
K380, V386, and A390, detected by NMR experiments,82
include positions that are at minima (F325, F340, and 1341) or
in close vicinity to minima here (A376, K380, V386, and A390
are immediate neighbors of the minima at L379 and 1388).
Also, the majority of the positions that comprise the allosteric
path identified on the basis of a dynamic response analysis™’
correspond to minima here. Finally, MCPath analysis
suggested the four most probable paths starting from the
ligand binding residue H372 (H372, F325, L353; H372, 1327,
1338, L353; H372, T7 (ligand), 1327, 1338, L353; H372, T7
(ligand), V9 (ligand), F32S, A347, L353),83 surfing through
minima positions.
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A Histogram and distribution function for number of mutation sensitive positions overlapping with local minima
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Figure 3. Statistical significance of the correlation between the mutation-sensitive positions of the PSD95-PDZ domain, detected in the deep
sequencing experiments, and the dynamics perturbation analysis as reflected in the three slowest modes of motion. (A) Statistical significance of the
number of mutation-sensitive positions that overlap with the minima in the cumulative residue fluctuation profiles. The observed overlap (pink) is
far into the right tail of the random distribution (blue diagram and red density function). (B) Statistical significance of the mean distance between
the mutation-sensitive positions and the minima. The observed average distance (pink) is far into the left tail of the random distribution (blue

diagram and red density function).

It is noticeable that while some of the above studies
highlight networks of spatially close positions, our analysis
detects sparse allosteric pathways that dynamically couple
residues that are most often remote from each other in 3D
space. Reassuringly, many of these positions contribute to the
previously described spatial networks.

Statistical Significance. A statistical analysis is performed to
assess the significance of the apparent correlation between
mutation-sensitive positions and the local/global minima of
the cumulative residue fluctuation difference profiles. To this
end, the 20 mutation-sensitive positions with highest func-
tional costs are considered, compared to a null model,
comprising randomly selected sets of 20 positions. Here we

detail an examination of the correlation between the mutation-
sensitive positions and the fluctuation difference profiles
obtained for the three slowest modes. The analysis considers
both the number of mutation-sensitive positions that overlap
with the minima, and the mean distances between the
mutation-sensitive positions and the minima. The histograms
and distribution functions are given in Figure 3, together with
detailed results and p-values from the statistical significance
analysis. Eleven of the mutation-sensitive positions reside in
minima, and the mean distance of the mutation-sensitive
positions and the minima are 1.06 A, with respective p-values
of 1.7 X 107° and 1.2 X 1073, attesting for very high statistical
significance. Equally significant correlations are observed when
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Figure 4. Cumulative residue fluctuation difference profile upon strain perturbation, calculated using the three slowest modes. Mutation-sensitive

positions, detected using the deep sequencing data, are marked as red asterisks, and binding site residues as green asterisks. (A) CcdB. (B) GAL4

DNA binding region. (C) PAB1-RRM2 domain. (D) Ubiquitin. (E) TEM1 fS-lactamase. (F) H-Ras GTPase. Binding site information is obtained
67

from the related crystal structure entries on PDBsum.

considering the five slowest-, the ten slowest-, and all-modes
(Table S1).

Next, we extend the analysis to cover the whole spectrum of
mutation-sensitive positions. First, we consider various
selections of mutation-sensitive positions, including the 12,
the 17, the 27, and the 36 most sensitive positions (Figure S1).
Reassuringly, the statistically significant correlation observed
between mutation-sensitive positions and the minima in the
cumulative residue fluctuation profiles persists (Table S2).
Then, we consider four different clusters of residues according
to their functional costs: the first 20, the next 16, and the next
20 mutation-sensitive positions, respectively, with high,
intermediate, and low functional costs. In addition, we
considered the ten mutation-sensitive positions with the
most positive effect on fitness. For each group of positions,
we examined the correlation with both the minima and
maxima of the cumulative residue fluctuation profiles. As we
progress through the clusters from the most negative to

positive effect on fitness, their correlation with the minima
decreases (p-value increases), to a point where the cluster of
positions with positive effect on fitness has a negative
correlation with the minima (p-value 0.97). On the other
hand, their correlations to the maxima are reversed in order.
Positions with positive effect on fitness have strong correlation
with the maxima (p-value 0.06), and the correlation decreases
and becomes negative as we progress toward the cluster of
residues with high functional cost (p-value 0.99) (Figure S13).
This was attempted by another statistical mechanics-based
perturbation approach, which was able to predict the sense of
mutations grouped as up and down mutations but with
relatively low correlation coefficient of prediction with the
fitness values.*®

Analysis of the Data Set. The GNM-based perturbation
analysis is applied to the remaining six proteins in the deep
sequencing data set (Table 1), i.e,, CcdB, GAL4 DNA binding
region, PAB1-RRM2 domain, ubiquitin, TEM1 p-lactamase,
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PAB1 RRM2 Domain
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Figure S. Cumulative residue fluctuation differences, calculated on the basis of the three slowest modes, colorcoded on the structure using the blue-
white-red palettes. Mutation-sensitive positions, detected using the deep sequencing data, are indicated using space-filling models. (A) CcdB. (B)
GAL4 DNA binding region bound to its DNA ligand. (C) PAB1-RRM2 domain within the context of its biological complex. (D) Ubiquitin. (E)

TEMI1 p-lactamase. (F) H-Ras GTPase in complex with its substrate.

Table 2. Mutation-Sensitive Amino Acid Positions and Positions Located at the Minima of the Cumulative Residue

Fluctuation Profiles in the Three Slowest Modes”

structure mutation-sensitive positions minimum positions (three slowest modes)
CcdB 2356182022243435366368839094 25 14 16 20 25 27 35 50 63 66 68 71 90 93 95 97
98 99 100
GAL4 - DNA 101112141517 18222628 38414647 9 15 18 21 40 43 46 48 51 54
binding 50 51 54 64
region
PAB1-RRM2 100 101 102 103 104 106 110 115 122 123 100 102 112 116 129 132 142 144
domain 125 127 129 141 142 143 144 145 146
185
ubiquitin 3482736424447 4859 61 67 686970 6 13 1517 23 26 30 38 43 50 52 61 67 69 71
71
TEM1 (- 45 66 70 73 130 131 132 134 157 166 179 44 46 51 59 62 70 73 76 81 90 103 108 119 123 127 130 134 137 139 142 144 148 157 160 162
lactamase) 181 207 229 234 236 241 244 251 282 166 170 179 181 183 187 190 192 208 212 214 217 221 225 233 235 245 247 249 261 276 279

1
2

GTPase H-Ras 6 10 15 16 17 35 38 40 57 7578 111 1
1

113 114 115 119 138 141 156 159

157 160

12 461016 19 24 40 42 46 53 55 60 68 71 76 78 81 89 93 96 100 109 111 114 137 139 142 152

“Overlapping residues are marked as bold and underlined. Here, only exact overlap is considered. Many other positions are in close proximity to

the minima.

and H-Ras GTPase. Mutation-sensitive positions are consid-
ered based on their functional costs shown in Figures S2—S7.

As with the PSD95-PDZ domain described above, the
cumulative fluctuation difference profiles obtained for each
structure based on the three slowest, the five slowest, the ten
slowest, and all modes of motions are very similar to each
other (Figures S14—19). We therefore focus on the results
obtained using modes 1-through-3. For completeness we also
append the cumulative residue fluctuation difference profiles of
the individual modes (Figure $20). Mapping of the cumulative
fluctuation difference profiles on the amino acid sequence
(Figure 4) and structure (Figure S) manifests that mutation-
sensitive positions are commonly found at, or in the vicinity of|
local/global minima (except in ubiquitin). The list of

mutation-sensitive positions and the minima of the cumulative
residue fluctuation difference profiles of the six proteins in the
data set are given in Table 2. More detailed description and
implications of the analysis for each case is provided in the
Supporting Information.

Statistical Significance. To examine the significance of the
correlation between mutation-sensitive positions and the
minima of cumulative residue fluctuation profiles of the
perturbation analysis, we applied the statistical analysis
described above for the PSD95-PDZ domain also for the
rest of the proteins in our data set. p-values for the correlation
between the number of mutation-sensitive positions, deduced
from the deep sequencing data, which overlap with minima in
the cumulative residue fluctuation difference profile are shown
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Table 3. Statistical Significance Analysis Results for the Correlation between the Number of Mutation-Sensitive Positions,
Deduced from the Deep Sequencing Data, That Overlap with Minima in the Cumulative Residue Fluctuation Difference

Profile, Calculated Here, Based on the Three Slowest Modes

number of mutation-sensitive positions mean number of random positions overlapping with local ~ standard
structure overlapping with local minima minima (random samplingg deviation p-value
PSD95-PDZ 11 4.32 1.61 1.70 X 107°
domain
CcdB 7 3.19 1.47 0.00S
GAL4—-DNA S 3.13 1.34 0.081
binding region
PABI1-RRM2 S 2.15 1.20 0.009
domain
ubiquitin 4 3.15 142 0.274
TEM1 p-lactamase 7 3.57 1.63 427 x 107
GTPase H-Ras 7 3.80 1.66 0.027

in Table 3, and p-values for the mean distance between these
positions and the minima are listed in Table 4. Except for

Table 4. Statistical Significance of the Mean Distance
between the Mutation-Sensitive Positions, Deduced from
the Deep Sequencing Data, and the Minima in the
Cumulative Residue Fluctuation Difference Profile,
Calculated Here, Based on the Three Slowest Modes

mean distance
(A) of ran-

mean distance
(A) of muta-

tion-sensitive ~ domly selected  standard
positions to positions to deviation
structure local minima local minima (A) p-value
PSD95-PDZ 1.06 A 2.16 A 0362 A 0.0012
domain
CcdB 1.39 A 3.14 A 0.562 A 9.41 x 107*
GAL4—-DNA 217 A 348 A 0.703 A 0.0305
binding re-
gion
PABI-RRM2 220 A 3.87 A 0481 A 260 x 107™*
domain
ubiquitin 211 A 261 A 0524 A 0.1730
TEM1 1.52 A 2.79 A 0518 A 0.0071
P-lactamase
GTPase H-Ras 1.63 A 294 A 0.560 A 0.0098

ubiquitin, the results show highly significant correlations.
Furthermore, we extend the analysis and consider various
selections of mutation-sensitive positions depending on the
tiers of their functional costs (Table S3). The statistically
significant correlation observed between mutation-sensitive
positions and the minima in the cumulative residue fluctuation
profiles is retained.

Ubiquitin is an outlier, with weaker, and less significant,
correlation between mutation-sensitive positions and the
minima of cumulative residue fluctuation difference profiles.
This could be due to the low-resolution nature and the absence
of specific interactions (acidic, basic, polar, and nonpolar) in
our model. To partially account for side chain specific
interactions, we incorporate side chains into the GNM analysis
of ubiquitin. The importance of lysine residues (especially K48
and K63) and side chain interactions for ubiquitin is well-
known for ubiquitin.***> When we perform the GNM-based
perturbation analysis based on the Cf atoms or side chain
centroids instead of the Ca atoms (Figure S21), more
mutation-sensitive positions reside at the minima of the
cumulative residue fluctuation profile. This is reflected in lower
p-values, which decreased from 0.1730 (for the Ca-based
model) to 0.0285 and 0.0362 for the correlation of the

mutation-sensitive positions with the minima when represent-
ing the residues on the basis of only their Cf atoms and only
side chain centroids, respectively. The corresponding mean
distances of the mutation-sensitive positions to the minima
decrease from 2.11 to 0.86 A (for both C# and side chain
centroids). Reassuringly, the p-values calculated using the same
procedure for the remaining proteins in the deep sequencing
data set were similar to the values obtained using the Ca-based
model (Table S4).

B CONCLUSION

Perturbations on mutation-sensitive positions here do not
change the native state of the protein but rather modify
equilibrium residue fluctuations, i.e., the features of dynamic
modes, around this state. The shift in the eigenvalues leads to
the most pronounced effect on the global fluctuations of the
structure, facilitating allosteric interactions of functional
importance. For this reason, even the highly approximate
GNM description of the dynamics was sufficient to reveal
many of the mutation-sensitive positions that emerge from the
deep sequencing data.

Bearing that in mind, it is easy to rationalize that mutation-
sensitive positions, observed in the deep mutation data, reside
in (or near) global minima of the cumulative residue
fluctuation difference profile. However, that some of the
mutation-sensitive positions correspond to local minima of this
profile might appear puzzling at first. This less trivial result is
because the cumulative residue fluctuation difference profile is
an average; a certain position could be of high mechanistic
importance in one mode but not in another. Thus, a hinge
position that repeats in more than one mode or belongs to the
slowest mode is likely to appear as a global minimum with the
stronger response upon perturbation. On the other hand, a
hinge that belongs to a specific mode (other than the slowest)
may appear as a local minimum that leads to a relatively weak
response upon perturbation in the average behavior. It does
not make the local minimum less important as the particular
mode where this position is a global minimum could be critical
for a specific function. In this respect, the local and global
minima in the cumulative residue fluctuation difference profile
are equally important within the context of this study.

Overall, the correspondence between local/global minima of
the cumulative residue fluctuation difference profile and
mutation-sensitive amino acid positions is yet another
manifestation of the key role of allostery in protein function.
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