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SUMMARY

It can be informative to viewbiological data, e.g., pro-
tein-protein interactions within a large complex, in a
network representation coupled with three-dimen-
sional structural visualizations of individual molecu-
lar entities. CyToStruct, introduced here, provides a
transparent interface between the Cytoscape plat-
form for network analysis and molecular viewers,
including PyMOL, UCSF Chimera, VMD, and Jmol.
CyToStruct launches and passes scripts tomolecular
viewers from thenetwork’s edgesandnodes.Wepro-
vide demonstrations to analyze interactions among
subunits in large protein/RNA/DNA complexes, and
similarities among proteins. CyToStruct enriches the
network tools ofCytoscapeby adding a layer of struc-
tural analysis, offering all capabilities implemented in
molecular viewers. CyToStruct is available at https://
bitbucket.org/sergeyn/cytostruct/wiki/Home and in
the Cytoscape App Store. Given the coordinates
of a molecular complex, our web server (http://
trachel-srv.cs.haifa.ac.il/rachel/ppi/) automatically
generates all files needed to visualize the complex
as a Cytoscape network with CyToStruct bridging to
PyMOL, UCSF Chimera, VMD, and Jmol.

INTRODUCTION

Network representations of molecular systems, coupled with

protein structural information, can yield insights into many inter-

esting questions in molecular biology (Ben-Tal and Kolodny,

2014; Greene, 2012). Network representations are frequently

used, for example, in the study of protein-protein interactions.

In these networks, nodes represent proteins and edges repre-

sent interactions between the proteins. Structural data on

proteins and their interactions, e.g., within a molecular com-

plex, can provide useful insights that complement the network

perspective (Petrey and Honig, 2014; Russell and Aloy, 2008;

Stein et al., 2011): For example, structural information can help

reveal the effects of clinical mutations on the interaction between

a specific pair of proteins, and the network can then be exploited

to identify cellular processes that might be affected by these

mutations. Similarly it is also insightful to visualize relationships

among drug-like compounds using network and structural repre-

sentations (e.g., Keiser et al., 2007; Xiong et al., 2008). Such in-

sights could ultimately be leveraged to suggest small therapeutic

molecules to manipulate these cellular processes by altering the

interactions between specific protein pairs.

More broadly, networks provide a very general framework for

studying objects, represented by nodes, and the relationships

among them, represented by the edges that connect nodes. In

the context of molecular biology, nodes can represent structural

entities, such as metabolites, nucleic acid chains, protein chains

or complexes, domains, motifs, secondary structure elements,

and even residues or atoms. The set of nodes can be large,

collectively representing a metabolome (Chang et al., 2013;

Zhang et al., 2009), a proteome (Singh et al., 2008), the set of

all known proteins (Dokholyan et al., 2002; Nepomnyachiy

et al., 2014), or drugs (Keiser et al., 2007). Alternatively, the

network can include proteins of a specific complex (Aloy et al.,

2004). At an even finer resolution, the nodes can represent

residues within a single protein (e.g., Amitai et al., 2004). The

edges can represent different types of relationships, including:

biochemical reactions (Jeong et al., 2000), a likely common

evolutionary origin (Nepomnyachiy et al., 2014), geometric simi-

larity (Dokholyan et al., 2002), interaction between proteins (Aloy

and Russell, 2006), co-occurrence (Bornberg-Bauer et al., 2005),

or a shared interface (Aloy et al., 2004). These are merely exam-

ples demonstrating the wide appeal and potential of using net-

works in molecular biology research.

Visualization offers straightforward means of studying net-

works and the relationships within them. There are two types

of information that a scholar of a molecular biological system

may wish to visualize: the overall network and the individual

molecular entities represented by the edges and nodes of the

network. Cytoscape is a powerful and user-friendly software

tool for visualizing networks (Saito et al., 2012). In Cytoscape,

the user specifies the list of nodes and their connecting edges,

and can also specify parameters that are associated with the no-

des and edges. Cytoscape visualizes the information as a two-

dimensional figure of the network, and the visual properties of

the nodes/edges can be customized according to their parame-

ters. To visualize molecular structures, the scholar can select

from many available molecular viewers (for a review of these,

see O’Donoghue et al., 2010). Molecular viewers are sophisti-

cated software tools that not only highlight particular aspects

of one or many molecules/proteins but can also analyze the
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structures themselves (e.g., they implement algorithms for com-

paring two structures by calculating the optimal rotation and

translation for superimposition). Scholars can customize molec-

ular viewers in either of the following two ways: (1) using the

graphical user interface (GUI) and a series of mouse clicks, or

(2) using a command line interface and a series of commands

in the appropriate syntax; a set of such commands is termed a

script. The GUI is easier for novice users and convenient for

small-scale applications, whereas large-scale operations require

the use of scripts.

Several tools offer integrations of the network and molecular

views. StructureViz (Morris et al., 2007) is a Cytoscape app

that links Cytoscape to UCSF Chimera (Pettersen et al., 2004).

Others analyze molecular structures as a network, in which the

residues/atoms are the nodes, and the analysis is geared to

better understand the structure itself. These include RINalyzer

(Doncheva et al., 2011), a Cytoscape plugin that converts a

molecule into a network and visualizes it in Cytoscape or xPyder

& PyInteraph, which are PyMOL (Schrodinger, 2010) plugins

(Pasi et al., 2012; Tiberti et al., 2014), and NetworkView (Eargle

and Luthey-Schulten, 2012), which extends VMD (Humphrey

et al., 1996).

Protein scholars have combined the network and molecular

perspectives in various studies (e.g., Alva et al., 2010; Do-

kholyan et al., 2002; Farı́as-Rico et al., 2014; Sillitoe et al.,

2015; Skolnick et al., 2009). When studying all of the protein

space we revealed that protein space is non-homogeneous

and includes a continuous region with many similar folds in

addition to discrete regions with isolated folds (Nepomnyachiy

et al., 2014). A combined approach was also used to predict

protein-protein interactions in complexes (e.g., Lasker et al.,

2012, 2010), and to study signal transduction pathways (e.g.,

Aloy and Russell, 2002; Hosur et al., 2012) and interactions

on a genome scale (e.g., Zhang et al., 2012). It was also

used to study specificity-determining (e.g., Chakraborty et al.,

2012) and co-evolving (e.g., de Juan et al., 2013; Marks

et al., 2012) amino acids. Finally, scholars used the aforemen-

tioned existing tools to study specific protein families (e.g., Sef-

fernick et al., 2009; Sukovich et al., 2010) and proteins (e.g.,

Raucci et al., 2014; Singh et al., 2014).

We present here CyToStruct, an open-source Cytoscape 3.0

(Saito et al., 2012) application that seamlessly and automatically

connects the network viewwith potentially anymolecular viewer.

This is implemented by adding commands to a menu linked to

the nodes and edges in the network. The commands run an

external program—typically, a pre-specified molecular viewer,

with a customized script—thus providing a molecular visualiza-

tion of the selected node or edge.

CyToStruct is geared for ‘‘power users’’ of several types.

First and foremost, it is well suited for scholars who want to

use the full range of capabilities of their molecular viewers

and rely on script interfaces to do so. Indeed, the script inter-

faces of molecular viewers are well developed, well docu-

mented, and stable, in that they are not expected to change

when the software is upgraded. CyToStruct also caters to po-

wer users who study datasets that are too large to be pro-

cessed manually with a mouse; these users must process their

data automatically and configure their viewers via scripts. In

particular, when the relationships among the structural entities

composing the network are identified using existing software

tools (e.g., using a structural aligner [Krissinel and Henrick,

2004] or interface analysis tools such as PISA [Krissinel and

Henrick, 2007] or COCOMAPS [Vangone et al., 2011]), the input

to the viewer can be easily generated automatically from the

output of other computer programs. Finally, CyToStruct offers

a way for scholars who have carefully assembled networks

incorporating structural data to easily share their results with

the scientific community. Using CyToStruct, such scholars

can specify the networks and highlight structural data for every

node and edge.

The configuration effort involved in using CyToStruct is mini-

mal. Once CyToStruct is installed, all one needs to do is create

a template in the scripting language of the desired molecular

viewer, and prepare a text file with the table that holds the

node- or edge-specific information for the script. We have

created three demonstrations that highlight the capabilities of

CyToStruct and show how to configure the different files. The

demo scripts we provide can be downloaded and used as a

starting point for configuring CyToStruct for new applications.

To further assist in configuring CyToStruct when studyingmolec-

ular complexes as networks, we have set up a web server (http://

trachel-srv.cs.haifa.ac.il/rachel/ppi/) which, given the atomic co-

ordinates (PDB file) of a complex, generates the Cytoscape file

along with all necessary CyToStruct data files.

RESULTS

Demonstrating CyToStruct
We compiled three demos describing, respectively, (1) inter-mo-

lecular interactions within a large protein/RNA complex (protein-

protein interaction network), (2) a network of similarity among

structural domains, and (3) a tutorial with only four nodes.

The demos are available for download from the accompanying

website (https://bitbucket.org/sergeyn/cytostruct/wiki/Demos

%20(case%20studies): each demo includes a sample network

and corresponding structural data. The networks and their prop-

erties (e.g., edge width, or node colors), are described in the Cy-

toscape session files (of type .cys). For each demo, we manually

imported the Cytoscape network from a file with a list of con-

nected nodes (we attach the .sif files). Notice that to customize

the script for the molecular viewers per node and edge, each

node and each edgemust have a unique identifier. The additional

structural data include (1) the CyToStruct data matrix file(s), (2)

the files containing the coordinates of the molecular structures

(of type .pdb), and (3) the CyToStruct YAML configuration file

(http://www.yaml.org/). We provide configuration files with me-

nus that run Jmol (http://www.jmol.org/), PyMOL (Schrodinger,

2010), VMD (Humphrey et al., 1996), and UCSF Chimera (Pet-

tersen et al., 2004). These molecular viewers are freely available

for academic use, and the user should install the desired viewer

on his or her machine before running the demos. Furthermore, in

the (Windows) YAML files, we assume that the commands ‘‘py-

molwin,’’ ‘‘vmd,’’ and ‘‘chimera’’ run the programs (i.e., that the

location of their executables is in the Path environment variable).

In the case of Jmol, we run the ‘‘java’’ commandwith appropriate

flags (e.g., -jar ‘‘C:yProgram Files (x86)yJmolyJmol.jar,’’ and

these flags depend on the specific location of the Jmol installa-

tion); note that in this case the executable is the command

942 Structure 23, 941–948, May 5, 2015 ª2015 Elsevier Ltd All rights reserved

http://trachel-srv.cs.haifa.ac.il/rachel/ppi/
http://trachel-srv.cs.haifa.ac.il/rachel/ppi/
https://bitbucket.org/sergeyn/cytostruct/wiki/Demos%20(case%20studies)
https://bitbucket.org/sergeyn/cytostruct/wiki/Demos%20(case%20studies)
http://www.yaml.org/
http://www.jmol.org/


‘‘java,’’ and Jmol is specified via the command line arguments of

that program. Finally, one must also install CyToStruct (from the

Cytoscape App Store at http://apps.cytoscape.org/).

Next, we describe the demos.

Protein-Protein Interaction Network

The network represents the human mitochondrial ribosome

complex ((Brown et al., 2014); PDB ID 3J7Y). The complex

has 48 proteins, 20 of which are mitochondria specific. Using

PISA (Krissinel and Henrick, 2007), we calculated the areas

and residues of interfaces in the complex and created a

network based on the list of contacts. Each node is a protein

(nodes that are colored light blue represent conserved pro-

teins; yellow nodes are mitochondria specific), and protein

pairs with an interface larger than 100 Å2 are connected by

an edge; the edge width is proportional to the interface area.

Right-clicking on a node launches a visualization of the node’s

corresponding protein, e.g., using PyMOL. Right-clicking on

an edge launches a visualization of the two corresponding in-

teracting proteins, with their interface residues highlighted.

Figure 1 shows a screenshot of the network in Cytoscape,

and the selection of an edge, along with the PyMOL window

showing the interface.

Indeed, any molecular complex can be represented as a

network: Cytoscape can visualize the overall structure, and mo-

lecular viewers can visualize the interacting chains and interface

residues; CyToStruct can bridge between the two. To help first-

time users, we have set up a web server (http://trachel-srv.cs.

haifa.ac.il/rachel/ppi/) that converts PISA (Krissinel and Henrick,

2007) output to the format needed by Cytoscape and CyToS-

truct, given a complex file (e.g., 3j7y.pdb). Once CyToStruct is

installed, the user can open the *.cys file included in the output

zip file, and explore the chains and interfaces by right-clicking

on a node or edge to run a molecular viewer with the script

customized for that node or edge.

A Network of the Similarities among Structural Domains

The network (Nepomnyachiy et al., 2014) consists of a 70%

sequence non-redundant representative set of SCOP (Struc-

tural Classification of Proteins) domains (Hubbard et al.,

1997). Nodes represent domains, each colored according to

its SCOP class; each edge connects a pair of domains that

share a motif: a subset of more than 75 residues with similar

sequences (more than 30% similarity) and similar structures

(at most 2.5 Å root-mean-square deviation [RMSD] after opti-

mally superimposing the two; see Nepomnyachiy et al., 2014

for details). Figure 2 shows a screenshot of the network in

Cytoscape, along with a selection of an edge in PyMOL. To

generate a visualization of an edge for this network, the scripts

load the two connected domains and color their similar motifs

in cyan and magenta. Importantly, to demonstrate the similarity

between the motifs, we use the molecular viewers to calculate

the optimal rotation and translation (in terms of the lowest

RMSD) for the matching residues and use the output to

Figure 1. CyToStruct Interfaces between a Cytoscape Network of Protein-Protein Interactions and the Corresponding Protein/RNA Com-

plex, Visualized Using PyMOL

The network describes the human mitochondrial ribosome complex of 48 proteins (Brown et al., 2014). The PyMOL window at the front shows the interface

between two proteins, mL51 and uL4, highlighting the CA atoms of the interface residues (as identified by PISA [Krissinel and Henrick, 2007]) as spheres.
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superimpose the two domains on top of each other. We

emphasize that the alignments shown in this network are not

of the full chains but are only of matching residues; these align-

ments were calculated beforehand using the structural align-

ment method SSM (secondary structure matching) (Krissinel

and Henrick, 2004). Indeed, it is possible to customize CyToS-

truct to show such alignments by providing the (long) lists of

matching residues in the data file, and using the commands

that implement Kabsch’s algorithm (Kabsch, 1978) (‘‘compare,’’

‘‘pair_fit,’’ and ‘‘match’’ in Jmol, PyMOL, and UCSF Chimera,

respectively). Note that this is a large network, with more

than 9,000 nodes and 61,000 edges, far too large for a user

to interactively specify all calculations. The domain similarity

network exemplifies the ease with which CyToStruct can be

used to disseminate network data to the scientific community,

offering a meaningful presentation of the relationships in protein

space.

A Small Tutorial with only Three Nodes

This demo shows how to launch CyToStruct from nodes

(domains) and edges (representing similarities among the

domains), and how to generate scripts that include all three

data-infusion cases: variable replacement, vertical replication,

and horizontal replication. In this demo, we also include a

menu that launches a program that is not a molecular viewer.

The program—in this case, running a web browser and opening

the web page describing the domain in SCOP—is launched us-

ing command line arguments. Our goal is to demonstrate that

adapting CyToStruct for such a use is straightforward, given

that CyToStruct functions by running an executable with com-

mand line arguments that are customized per node. To do this,

we run the browser executable (explorer.exe), with a command

line argument http://scop.berkeley.edu/search/?ver=2.05&key=

%node%.

DISCUSSION

It is very natural to use network representations to study large

biomolecular datasets and decipher them using various graph-

theoretic tools. The network view can provide global intuition

about the data. Likewise, it can be highly informative to view

and analyze the molecular structures that ‘‘hide behind’’ the no-

des and edges of the network. Yet combining the two types of

information—the network perspective and structural informa-

tion—can provide even more powerful insights than can be ob-

tained using either data source independently. For example,

the use of such an integrated approach has revealed that en-

zymes of metabolic networks come from a rather limited set of

folds (Zhang et al., 2009). The combined view has also shown

that protein space is non-homogeneous and includes a contin-

uous region with many similar folds, in addition to discrete re-

gions with isolated folds (Nepomnyachiy et al., 2014). Combining

network representations and structural information has also

made it possible to predict protein-protein interactions in com-

plexes (Lasker et al., 2012, 2010), signal transduction pathways

Figure 2. CyToStruct Interfaces between a Cytoscape Network of Similarity and its Structural Determinants, Visualized Using PyMOL

TheCytoscapewindow at the back of this screenshot shows a network of similar protein domains. The PyMOLwindow at the front shows a superimposition of the

similar cyan and magenta motifs that correspond to the common parts in two nodes connected by the edge that is highlighted in red.
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(Aloy and Russell, 2002; Hosur et al., 2012), and interactions on a

genome scale (Zhang et al., 2012).

CyToStruct provides a flexible bridge between the network

and structural view of the data. It differs from existing tools

in important ways. (1) It runs from all nodes and edges. (2) It

is not coupled with a specific molecular viewer (as opposed

to StructureViz, coupled with UCSF Chimera, and xPyder &

PyInteraph, coupled with PyMOL [Pasi et al., 2012; Tiberti

et al., 2014]). Instead, CyToStruct uses template scripts to

configure the molecular viewers. This allows CyToStruct to

pass node- or edge-specific information to potentially any

viewer via command line arguments or, more conveniently,

via a script. Hence, CyToStruct can enhance the network visu-

alization with the full range of capabilities of the different mo-

lecular viewer, including any structure analysis commands.

This is very significant, as there are many computational

routines that are implemented only in specific viewers, and

using them is only possible within that context. For example,

PyMOL has a large database of user-contributed extensions

with unique capabilities; for example, modules to study dock-

ing (Seeliger and de Groot, 2010), molecular mechanics (Lill

and Danielson, 2011), geometric concepts around proteins

(Ordog, 2008), or electrostatics (Baker et al., 2001). (3) CyToS-

truct can be easily configured to support different actions

simultaneously, e.g., different molecular viewers; this makes

it useful for sharing data in a way that is easily accessible to

a wide audience.

CyToStruct was designed to make the transition between

network and molecular visualizations as smooth as possible.

To do this, CyToStruct adds a layer of all the capabilities of

molecular viewers on top of the Cytoscape network. For

example, CyToStruct can be used to represent a molecular

complex both as a network (in Cytoscape), and to focus on

the details of the protein chains using one of four molecular

viewers; we provide a web server that will generate the data

files needed, given the structure of the complex. Alternatively,

it can map all the protein folds and/or interacting amino acids

in a network, and activate specialized commands to obtain a

desired view of each of these entities in a molecular viewer

(e.g., superimposing sets of residues, as in demo 2). In sum-

mary, CyToStruct can be valuable to many scholars, particu-

larly those who seek to study protein-protein interactions and

metabolic networks.

EXPERIMENTAL PROCEDURES

Specifying the Script Template and its Accompanying

Data Matrix File

Figure 3 shows a schematic overview of CyToStruct: scripts are specified as

templates, and node-specific and edge-specific data are infused into these

templates. This allows the user to customize the script per node or per edge,

in accordance with the node or edge from which the molecular viewer was

launched. The use of template scripts is what provides CyToStruct the flexibility

to runwith potentially anymolecular viewer. The data to be infused are stored in

two accompanying data matrix files, one for the nodes and one for the edges

A C

B

Figure 3. CyToStruct Augments Cytoscape with Molecular Viewers

The CyToStruct configuration includes a template script (A) with ‘‘missing’’ parts, here marked by the empty boxes 1, 2, and 3. The (in this case, edge) data matrix

file (B) includes a column for eachmissing piece. Each edge in the network has one or more lines in the matrix; the red edge shown here has two lines. CyToStruct

infuses the data from the matrix, shown here as filling the appropriate places in the template with the corresponding colored blocks, thereby generating a script.

Because there are two lines in the matrix, the generated script (C) includes two copies of the part in the template script to be replicated. For example, column 1

can specify the name of the protein to be opened in the viewer, and column 2 the list of interface residues; in this demonstration, two proteins (the purple and the

yellow) are loaded, and their interface residues are highlighted in light green and dark blue, respectively. The generated script is passed to the molecular viewer,

and the data are shown (rightmost panel).

Structure 23, 941–948, May 5, 2015 ª2015 Elsevier Ltd All rights reserved 945



(Figure 3 shows only the edgedatamatrix); the templates are stored in theCyto-

scape session file (of type .cys). Both the template scripts and data in the data

matrix files are configured by the user. Importantly, CyToStruct separates the

configuration of the template script (Figure 3A) and that of the data matrix files

(Figure 3B), thereby enabling the user to represent the data succinctly and still

maintain the flexibility to generate a script of any syntax. Indeed, our demos

showhow to use the samedatamatrix files to infuse script templates of different

syntax, allowing CyToStruct to generate scripts for different molecular viewers.

We use four popular viewers in our demos: Jmol, PyMOL (Schrodinger, 2010),

VMD (Humphrey et al., 1996), and UCSF Chimera (Pettersen et al., 2004).

The datamatrix is a text file that holds all node- and edge-specific data. Each

matrix row holds the data of a single node or edge, specified by its unique key;

each node or edge should be represented by at least one row in the matrix, but

canhavemore thanone row.Thecolumns in thematrix correspond toattributes;

for example, the first column is the key. There are two types of columns: (1) col-

umnsstoring single items (e.g., a protein name, or color), and (2) columnsstoring

lists of items (e.g., lists of residues or residue ranges); lists are comma-sepa-

rated, and the number of items in them can vary. Hence, effectively, different

rows in the data matrix (each corresponding to a node or an edge) may contain

different numbers of data items. Thefirst line in thedatamatrix file lists the title of

each column. CyToStruct inserts data from the relevant rows in the data matrix

files into the template scripts. There are three modes for inserting these data,

named after their format in the data file: (1) simple variable replacement, (2) in-

ter-row (or vertical) replication, and (3) in-row (or horizontal) replication.

The first and most straightforward way to customize template scripts is by

simple variable replacement. Here, the user lists variables by their names, en-

closed between ‘‘%’’ symbols; CyToStruct replaces these variables with the

data from the column with the same name in the accompanying data matrix

file. For example, if the script template includes the syntax ‘‘%protein%,’’

CyToStruct will replace this variable in the generated script (Figure 3C) with

the information in the cell from the column titled ‘‘protein,’’ in the row of the

node from which the molecular viewer was launched. In Figure 3, we illustrate

this as infusing the script with colored blocks from the data matrix file. The

number of variables and the content of each variable are completely unre-

stricted: CyToStruct simply replaces each variable in the template script

with the data in the column titled with that variable name.

One can also customize the template scripts for a node or an edge by asso-

ciating with themmore than a single line in the datamatrix file. In this case, rele-

vant parts of the template script will be generated, in multiple copies, each

modified with the data from a different row. For example, a user can associate

with the nodes in their network a set of structures, which varies in size (e.g.,

depending on the size of the SCOP family); see the last demo below. The

user can mark the part(s) to be replicated, using the %V_START% and %

V_END% tags (V_ stands for vertical or inter-row) at the beginning and end

of the block to be replicated. Alternatively, CyToStruct supports replicating

only a subset within a single line of the data matrix file (e.g., a reference to a

list of residues or residue ranges). To do this the user can list items, separated

by commas, in one of the data matrix cells. The corresponding parts in the

template script that should be replicated, using the different items in that

list, should bemarked with the%H_START% and%H_END% tags (H_ stands

for horizontal or in-row). CyToStruct will repeatedly replace the variable asso-

ciated with the appropriate column title. In-row replication can be nested

within the inter-row replication. Figure 4 shows an example script with horizon-

tal and vertical replication. Note that the length of the script generated can

vary, depending on the length of the list of the specific node or edge, or the

number of lines per node/edge.

YAML Configuration

To configure CyToStruct (after installing it from the Cytoscape application

store; http://apps.cytoscape.org/), one needs to select the menu ‘‘Apps /

configure CyToStruct,’’ and associate a list of pre-defined fields with user-

defined values. Once configured, CyToStruct adds a menu of one or more

cd %dir%
bg_color white
%V_START%
load %domain%.ent 
select motif_%domain%, 
      (resi %H_START%%residues%,%H_END%%last_res%) 
color %dcolor%, %domain%
color %mcolor%, motif_%domain%
%V_END% 
hide all
show cartoon

cd C:\application_node_demo\
bg_color white

load d1ji4a_.ent 
select motif_d1ji4a_, (resi 1-2,4-20,22-24,25)  
color cyan, d1ji4a_
color blue, motif_d1ji4a_

load d1dtoa_.ent 
select motif_d1dtoa_, (resi 0-121,122) 
color orange, d1dtoa_
color red, motif_d1dtoa_
 
hide all
show cartoon

horizontal replication

vertical replication

variable replacement

node domain residues

1 d1ji4a_  25 cyan blue 

1 d1dtoa_  122 orange red 

2 d1tueb_ 163 magenta yellow 

3 d1r6na_  2  cyan blue 

last_res dcolor mcolor

1

0,2-123,124,127-161

0-121

1-2,4-20,22-24

A

C

B

Figure 4. An Example of Converting a Template Script into a Script, Using the Data Matrix File
(A) The template script in PyMOL syntax.

(B) The data matrix file with the data to be infused into the template script. There are five columns, corresponding to the five variables in the template script:

domain, residues, last_res, dcolor, and mcolor.

(C) The script that CyToStruct will generate, when launched by right-clicking on node 1. We highlight the simple variable replacement, with the example of

replacing the variable placeholder %mcolor% with the values in blue letters in the generated script. We also highlight horizontal replication, where the list of

comma-separated values in the column ‘‘residues’’ is replicated (highlighted with red letters). For vertical replication, the replicated block is marked; the part

generated by the first row is shown with a light gray background, and the part generated by the second row is shown with a light blue background.
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items that will open when the user right-clicks on a node or an edge in Cyto-

scape. Upon selection of an item from this menu, CyToStruct will execute a

program—typically, amolecular viewer (although it can also launch other types

of programs; see the following section for further details)—and pass it the

script it customized with the edge- or node-specific data. The user-defined

values for these pre-defined fields should be listed in valid YAML—a simple,

text-based, configuration language (the user can refer to online YAML syntax

validators if necessary; e.g., http://yamllint.com/). The pre-defined fields are:

(1) appContext, which specifies whether CyToStruct will be activated from

an edge or a node; (2) appCaption with the menu caption; (3) appBinary with

the name of the application to launch: this is the name of the command that

it is run from (e.g., pymolwin for PyMOL on Windows machines). If the user

wants to add command line arguments, he or she can list them following the

command name. Alternatively, one can use (4) cmdLineArgs with the com-

mand line arguments, (5) suffix with the suffix of the temporary script file

(e.g., pml for PyMOL), (6) dataMatrixFile with the name of the data matrix

file, and (7) scriptLines with the script template itself. Within the script, one

can use %variable% tags with any variable names, and the %H_START%,

%H_END%, %V_START%, and %V_END% tags. The variables %node%

and %edge% can be used in the script and in the command line arguments;

CyToStruct replaces such a variable with the label of the node or edge from

which the molecular viewer was launched. The variable %dir%, which holds

the directory of the current Cytoscape session file (of type .cys), can also be

used in the script. Finally, the user can specify alternative delimiters for the col-

umns in the data file (the default is a space) and within arrays (the default is a

comma) using (8) columnDelimiter and (9) arrayDelimiter.
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