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ABSTRACT

Motivation:Motion in transmembrane (TM) proteins plays an essential

role in a variety of biological phenomena. Thus, developing an auto-

mated method for predicting and simulating motion in this class of pro-

teins should result in an increased level of understanding of crucial

physiological mechanisms. We have developed an algorithm for pre-

dicting and simulating motion in TM proteins of the a-helix bundle type.

Our method employs probabilistic motion-planning techniques to sug-

gestpossiblecollision-freemotionpaths.The resultingpathsare ranked

according to the quality of the van der Waals interactions between the

TMhelices.Ouralgorithmconsidersawide rangeofdegreesof freedom

(dofs) involved in the motion, including external and internal moves.

However, in order to handle the vast dimensionality of the problem,

we employ some constraints on these dofs in a way that is unlikely to

rule out the native motion of the protein. Our algorithm simulates the

motion, including all the dofs, and automatically produces a movie that

demonstrates it.

Results:Overexpressionof theRTKErbB2was implicated in causinga

variety of human cancers. Recently, a molecular mechanism for

rotation-coupled activation of the receptor was suggested. We applied

ouralgorithmto investigate theTMdomainof thisprotein,andcompared

our results with this mechanism. A motion pathway that was similar

to the proposed mechanism ranked first, and motions with partial over-

lap to this pathway followed in rank order. In addition, we conducted

a negative-control computational-experiment usingGlycophorin A.Our

results confirmed the immobility of this TM protein, resulting in

degenerate paths comprising native-like conformations.

Supplementary information: Supplementary data are available at

http://www.cs.tau.ac.il/~angela/EGFR.html

Contact: angela@post.tau.ac.il

1 INTRODUCTION

In total, approximately 20–30% of proteins encoded by the genome

are transmembrane (TM). They form pumps and channels that con-

trol and guide the transportation of ions and metabolites across the

membrane. Other TM proteins function as receptors and are respon-

sible for molecular recognition of hormones and neurotransmitters.

Despite recent advances, it is extremely difficult to crystallize these

proteins, and even when a high-resolution structure is determined,

much effort is required to elucidate the protein’s mechanism of

action. So far, cartoon-resolution mechanisms have been suggested

for only a few TM-proteins, e.g. the lactose permease (Abramson

et al., 2003) and ErbB2 (Fleishman et al., 2002). However, mole-

cular details for these mechanisms are not defined yet. These mole-

cular details include, for instance, the following questions: What

exactly are the conformational changes that occur in each step along

the reaction coordinate? Whether, and to what extent do the helices

move as rigid bodies? Which torsion angles and side-chains alter

during the conformational change? Thus, one of the challenging

tasks in computational studies of TM-protein structures is to define

these molecular details as continuous motion that goes beyond the

cartoon-level resolution published so far in order to gain insight into

these mechanisms.

Proteins display a broad range of motions, from the fast and

localized motions (e.g. side-chain movements) to the slow large-scale

motions (e.g. domain movements). An important characteristic of

biomolecules is that the different types of motion are inter-

dependent and coupled to one another. Thus, in the investigation of

slow large-scale motions as we propose to find, ignoring the fast

small-scale motions might obscure the overall conformational

changes.

Many large-scale motions take place on time scales beyond

the accessibility of time-dependent methods, such as molecular

dynamics(MD)(Karplusetal.,2002).Normal-modeanalysis(NMA),

the Gaussian Network Model (GNM) and the Anisotropic Network

Model (ANM) (Bahar et al., 2005) are fast time-independent methods

used for computing vibrational modes and estimating the flexibility

of the protein. However, these techniques are not ideally suited to

deal with energy barriers and multiple minima in the potential-energy

surface. Monte Carlo simulations provide a useful alternative, but to

the best of our knowledge, they were not used to study large-scale

motions in TM proteins.

Motion planning (MP) is a fundamental problem, originally stu-

died in robotics and computational geometry, but with implications

in numerous other fields (Latombe, 1991, 1999; Sharir, 2004). The

MP problem can be stated as follows: given a robot in an environ-

ment with obstacles, find a collision-free path connecting the current

(start) configuration of the robot to a desired (goal) configuration. A

class of randomized-path planning methods, known as Probabilistic

Road Map (PRM) methods have been successfully applied to com-

plicated high-dimensional problems (Kavraki et al., 1996; Hsu

et al., 1999; Choset et al., 2005). PRM techniques sample the

robot’s configuration space at random, and retain the collision-

free samples as milestones. Then, pairs of milestones are connected

with local paths that serve as collision-free connectors of the gen-

erated milestones. The result is an undirected graph, called a prob-

abilistic roadmap, whose nodes are the milestones and the edges are

the local paths.

A distinction exists between multi-query strategies (e.g. Kavraki

et al., 1999) and single-query ones (e.g. Hsu et al., 1999). In a

single-query strategy the goal is typically to find a collision-free

path between the two query configurations by exploring as little

space as possible. Single-query strategies often build a new

road map for each query by growing trees of sampled milestones

rooted at the initial and goal configurations (Hsu et al., 1999).

Rapidly-exploring Random Trees (RRT) (LaValle et al., 2001;�To whom correspondence should be addressed.
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LaValle, 2006), briefly described in Section 3.1, have been recog-

nized as a very useful tool for designing efficient single-query paths

in highly constrained spaces.

Probabilistic techniques combined with optimization and cluster-

ing have been used to sample conformational spaces of ligands and

identify their low-energy conformations (Finn et al., 1996). Rando-

mized path-planning methods were used successfully in computa-

tional biology by replacing the collision detection, used in robotic

applications, with a molecular force field. Singh et al. (1999) applied

PRM techniques to the ligand-binding problem. Apaydin et al.
(2001) and Amato et al. (2003) applied PRM techniques to study

protein folding. Recently, Cortes et al. (2005) developed an algo-

rithm to compute large-amplitude motions in flexible molecular

models. They applied RRTs to compute protein loop conformational

changes and ligand trajectories.

We extend the RRT framework to predict TM a-helix bundle

motions and the conformational changes of the helices in the bun-

dle. Eukaryotic TM proteins form predominantly a-helix bundles in

the membrane. Considering the a-helices as rigid bodies may

reduce the conformational space substantially. However, owing

to the large spectrum of motion scales, we do not assume that

the helices are completely rigid. Therefore, in addition to move-

ments of the helices as rigid bodies in three-dimensional (3D) space,

we consider also changes in torsion angles and side-chain flexibility

within these helices, while using constraints on these degrees of

freedom (dofs) in a way that the conformational space will not

exceed reasonable computational limits. Our algorithm is divided

into two main stages. The first stage filters out many infeasible

pathways using purely geometric considerations resulting in

collision-free paths. In the second stage, these paths are analyzed

using an energy-based criterion. The direct output of the algorithm

is several movies that simulate the feasible paths that can be further

examined, while taking into account functional data on the protein

under study.

We tested the effectiveness of the algorithm with an application

to the receptor tyrosine kinase (RTK) ErbB2 and Glycophorin A.

Our results comply with previous data on these proteins. It is

encouraging to note that motion paths for ErbB2 suggested by

our algorithm are similar to the mechanism proposed by

Fleishman et al. (2002) although we used very different methods

to suggest and simulate the motion path.

2 A TM PROTEIN MODEL

A protein can be described as a long linkage with side-chains

attached to the Ca atoms on its backbone. Using a standard model-

ing assumption for proteins, bond lengths and angles are often

treated as fixed during motion. However, torsion angles can change

significantly when the protein’s conformation changes. Thus, in our

model, a protein is considered as an articulated mechanism with

revolute joints corresponding to the torsion angles along the protein

backbone.

TM proteins of the a-helix bundle type comprise helices that are

embedded in the membrane. Although helices are often considered

as rigid bodies, for motion prediction purposes we cannot treat them

as entirely rigid. Thus, when moving from one conformation to

another, there might be slight changes in the (f, c) torsion angles

of amino acids in the helices. We model a helix as a kinematic chain

using the chain tree hierarchy introduced by Lotan et al. (2004). In

the chain tree hierarchy, the rotatable bonds, around which the

(f, c) torsion angles are defined, cut the protein backbone into

rigid groups of atoms, called links. There are two types of links.

The first includes the Ci�1, Oi�1 and Ni atoms, where i stands for the

position of amino acids along the protein backbone. The second

group includes Cai and all side-chain atoms attached to it (Fig. 1). A

reference frame is attached to each link in the chain and the relative

location of consecutive frames is defined by a homogeneous trans-

formation matrix, which is a function of the torsion-angle between

them. As the conformations of a helix change, the update of the

torsion angles of its backbone is done quickly by updating the

matrices corresponding to these torsion angles instead of updating

the Cartesian coordinates of the atoms. Collision detection with R
rigid links, takes OðR4

3Þ time, which is not optimal in the worst case,

but performs well in practice.

The algorithm of Lotan et al. (2004) assumes that the side-chains

are rigid, whereas in our implementation, under some criteria (as

explained below), we do allow side-chains to move.

2.1 Structural constraints

On the one hand, one of the driving forces behind motion in TM

proteins is to keep the helices tight together in a way that the

interactions between these helices do not decrease dramatically.

On the other hand, the helices cannot pack so closely as to generate

steric clashes between atoms. A steric clash occurs, when the dis-

tance between the centers of two non-bonded atoms is significantly

smaller than the sum of these atoms’ van der Waals (vdW) radii. We

partly allow penetration between atoms using a cutoff parameter K,

which is the percentage of the vdW radii, namely the centers of two

non-bonded atoms of vdW radii r1 and r2 must be at least K(r1+r2)

apart. For our experiments, we used K ¼ 60%. Thus, a fine combi-

nation of the two contradicting forces, tightness and steric-clash

avoidance, is considered in our model.

2.2 Problem statement

Given a set of helices represented as kinematic chains and an initial

spatial conformation of these helices, we aim to find a feasible

motion path (or paths) that simulate the native motion towards

goal conformations (that may not be given in advance). We denote

the set of n TM helices by {h1 . . . hn}. Each helix has six dofs

corresponding to its position and orientation.

2.3 Relaxations applied to the TM helices

If a helix hi has mi torsion angles, the dimensionality of the config-

uration space in our problem is enormous with 6nþ
Pn

i¼1 ðmi � 1Þ
dofs, where n is the number of helices. In addition, we consider side-

chain flexibility, leading to more dofs. However, we may use some

relaxations on the dimensionality of the problem when considering

TM helices. The relaxations we use are as follows: (1) The TM

helices cannot be fully buried in the membrane and therefore

their axes are limited to maximal tilt angles of 50� with respect to

the membrane normal. (2) The lateral movements of the helices as a

group in the membrane is not considered by our motion analysis,

implying that a specific rigid link of one helix can be placed at a fixed

location in 3D. (3) Canonical helices have (f¼�60,c¼�40) torsion

angles along the backbone. Since we want to limit helix distortion,

we allow each angle to deviate by less than ±10� from torsion angles

of a canonical helix. (4) Side-chain movements may be important

players in the motion-prediction problem. However, for the purposes
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of obtaining an approximation of the large-scale motions of the

protein, it seems reasonable to consider side-chain movements

only when they interfere with the way to a desired conformation.

Thus, each time we derive motion from one conformation to another,

we allow movements only in side-chains that are in conflict with this

motion.

3 THE ALGORITHM

We have developed a motion-planning algorithm to predict motion

in TM a-helix bundles. For a set of TM helices in 3D space, a

conformation of an a-helix bundle comprises all the geometric

information related to these helices, namely, the six dofs of helix

positions and orientations in 3D space, the torsion angles of each

amino acid and the conformations of the side-chains within these

helices. The conformation space, Cspace, is the union of all these

possible conformations. Cspace is divided into feasible, Cfeasible, and

forbidden, Cforbid, regions. Cforbid contains all the conformations

that involve steric clashes between atoms (both within and between

helices). In addition, Cforbid contains conformations that involve

low vdW interactions between the helices. Cfeasible is simply

CspacenCforbid.

Our algorithm proceeds in two stages: Growing RRT—construc-

tion of a tree (RRT) that contains the set of feasible collision-free

pathways emerging from a given initial conformation, using the

constraints described in Section 2.1 applied to the TM helices.

This stage is followed by Energy Analysis—assigning weights to

the generated nodes and edges in the RRT, corresponding to the

energy of a conformation (see Section 3.2 for details) and the energy

associated with the move from one conformation to another, respec-

tively. The rationale behind this division is that the first stage uses

purely geometric terms to efficiently filter out unlikely pathways

and reduces the search space on which the more intricate energy

analysis should be applied. Following the two-stage algorithm,

several weighted RRTs are built and clustering is performed on

the emerging pathways. The energetically favorable pathways are

chosen to produce movies.

3.1 Growing RRT

In its general form, the RRT algorithm is based on growing a

conformation-space tree T rooted at the initial conformation

qinit. T is incrementally grown to efficiently explore the feasible

conformation space in order to find a feasible path connecting qinit to

a goal conformation. In each iteration, a random conformation,

qrand, is generated and the nearest node, qnear, in T (according to

some appropriate distance metric M) is expanded towards qrand. If

no collision is found on the way towards the random conformation,

then qrand becomes a new vertex in the tree and an edge is added

between qnear and qrand. Otherwise, qnear expands as close as pos-

sible towards qrand. In this case, the last feasible conformation

(unless it is too close to qnear) becomes a vertex in T and an

edge is added between qnear and the new vertex (Fig. 2). It was

shown (LaValle et al., 2001) that this method leads to Voronoi-

biased growth of T . This means that vertices with large Voronoi

cells1 have a larger probability of being extended. This is a useful

property as large Voronoi cells represent unexplored areas of the

conformation space.

In our implementation, each node in the tree represents an a-helix

bundle conformation. In the beginning, the tree contains a given

initial conformation qinit. During the expansion process, new con-

formations are sampled uniformly at random while satisfying the

relaxations stated in Section 2.3. While growing an edge from qnear

towards qrand a forbidden conformation, qforbid, may occur. qforbid is

either a conformation with steric clashes, or it contains highly

remote helices, i.e. the distance between the helix axes are above

a given cutoff D (we use D ¼14 Å in the experiments reported

below). In the latter case the expansion is stopped and the algorithm

continues as usual. However, when collision between side chains

occurs during the expansion toward the sampled conformation, the

algorithm tries to adopt a new conformation only for the colliding

side-chains that obstruct the way to qrand, in a way that the adopted

conformation will be free of collisions. In case of a success, qnear

continues to expand towards qrand. Otherwise, a new node is gen-

erated for the last feasible conformation that was found.

Using the chain-tree hierarchy, the colliding side-chain can easily

be detected and examined. We employed a fairly simple procedure

that finds the set of collision free rotamers using the backbone-

dependent rotamer library from Dunbrack et al. (1994), considering

rotamers in the range [�50, �70] for f and [�30, �50] for c. The

backbone-dependent rotamer library evaluates each rotamer by a

probability term. Our algorithm preferentially selects high-

probability rotamers, while keeping the conformation free of

clashes. This step can be computationally expensive, but the number

of colliding side-chains in each iteration is relatively small. The

algorithm continues to grow the tree till a stopping criterion is

fulfilled. In our algorithm, the stopping criterion is reached if

novel conformations are not added to the tree after several itera-

tions. In other words, if the algorithm fails to expand T for a

threshold number of consecutive iterations, it implies that the

sampled conformations in T cover Cfeasible sufficiently, and the

expansion of T is stopped.

When a goal conformation is given, RRT strategies often try to

grow two trees rooted at the initial and goal conformations (LaValle,

2006). However, we anticipate that, owing to the paucity of structural

information regarding TM proteins, we may often encounter a case

whereby only one conformation is known, and so a goal conforma-

tion is unavailable. Therefore, after the generation of the tree, our

Fig. 1. The backbone degrees of freedom represented on a diglycine peptide.

The two-color background shows the partition of the atoms into links.

Reference frames are attached to each link origin at the Ca and C atoms

of the backbone. The z-axis of each frame is the vector along the rotatable

bond; the other two axes complete the frame to form an orthogonal right-hand

coordinate system.

1A Voronoi cell of a vertex v is the set of all points in space that are closer to v

than to any other vertex, under the given metric.
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algorithm suggests a goal conformation as well as the path that leads

to it.

3.2 Energy analysis

So far, we have considered only geometric constraints imposed on

the motion of TM helices, resulting in a tree with collision-free

paths. Our next goal is to incorporate energetic considerations into

the generation of the tree. It has been suggested that tight packing of

a-helices in TM proteins plays a considerable role in stabilizing

these proteins (Curran and Engelman, 2003), implying that vdW

forces are important descriptors of inter-helix interactions. We cal-

culated the vdW interactions between the helices using the Lennard-

Jones (LJ) 6–12 potential. The vdW energy of an a-helix bundle

conformation was calculated as

EvdW ¼
X
i>j

eij
sij

rij

� �12

� 2
sij

rij

� �6
" #

‚ ð1Þ

where rij is the distance between atoms i and j, eij is the energy-well

depth and sij is the atomic radii sums. The parameters were taken

from CHARMM19 (Neria et al., 1996). Thus, a weight was assigned

to each node in T , based on the LJ potential of its respective

conformation. In the same manner, we added a penalty-weight

to each edge between two conformations that corresponds to the

maximal LJ potential observed along the local path between them.

Given a weighted RRT, we wish to find paths that minimize the

weights along the pathway, and more importantly, lead to a goal

conformation that is associated with a low value of the potential. We

rely on a common assumption that a pathway may have some

energetically unfavorable conformations that may lead to a more

favorable conformation, and our aim is to capture these goal con-

formations. We define two different energy functions for each path:

a pathway function P that equals to the highest value of the potential

that is observed along the nodes and edges in the pathway, and a

goal function G that corresponds to the value of the potential of

the last conformation in the path, which we refer to as the goal

conformation. Formally, for a path p¼{v0, e0, v1, e1 . . . ek�1, vk},

where vi stands for a node and ej for an edge, P(p)¼ max0�i�k,

0�j�k�1{W(vi),W(ej)}, where W is the weight of the nodes or edges

in T , and G(p) ¼ W(vk).

3.2.1 Path clustering Different sequences of randomly sampled

conformations lead to different trees (RRTs). Thus, instead of grow-

ing one tree, several RRTs have been grown in the same way as

described in Section 3.1, and clustering is performed on the paths

derived from these trees. Each cluster comprises a set of paths that

end with the same goal conformation [i.e. the root-mean-square

deviation (rmsd) between the atoms of any two goal conformations

in a cluster is below a predefined cutoff Q; in our experiments we

use Q¼1.4 Å]. For a cluster Cj ¼ {p1, . . . ,pm}, a representative

path p� was chosen to be the one that minimizes the LJ potential

in the conformations stored on the path edges and nodes, i.e.

P(p�) ¼ min1�i�m{P(pi)}. Different paths may comprise different

lengths (number of nodes in the path), still, the above criterion

(minimizing P) is more dominant than the path lengths. However,

if several paths in a cluster had the same values P(p�), then

the representative path was chosen to be the shortest path among

them.

Clusters with a goal conformation that is close to the initial

conformation were ignored. A score was assigned to the remaining

clusters based on the LJ potential of the goal conformation G(p*)

and the number of paths in the cluster. We integrated the two terms

into a form of the colony function (Xiang et al., 2002). Thus, the

score of a cluster is FðCjÞ ¼
P

pieCj
e�GðpiÞ. In other words, the

score favors clusters comprising many paths leading to a mutual

energetically favorable conformation. The representative paths of

the highest-score clusters were selected to produce movies that

simulate the motion of the TM helices.

4 RESULTS

To explore the utility of the motion-planning algorithm in suggest-

ing possible pathways for conformational changes in proteins, we

used it to investigate the TM domain of the RTK ErbB2, over-

expression of which has been implicated in many types of cancer

[reviewed in Burgess et al. (2003)]. The protein, which is a member

of the epidermal growth factor-receptor (EGFR) family, includes

large extra- and intra-cellular domains that are connected by a single

TM helix. It is known to form homo- and heterodimers with other

EGFRs. It was proposed that ErbB2 activation involves a rotation in

the relative orientation of the cytoplasmic kinase domains within a

receptor dimer that is driven by a rotation of the TM helices (Jiang

et al., 1999). A molecular mechanism for such rotation-coupled

activation was suggested based on a computational exploration

of conformations of the ErbB2 TM domain (Fleishman et al.,
2002), yielding two symmetrical, and apparently stable, conforma-

tions. The more stable of the two conformations, involved packing

of the helices with Gly668 and Gly672 on consecutive helical turns,

invoking the Gly-xxx-Gly sequence motif (Curran and Engelman,

2003), at the inter-helix interface. In the less stable conformation,

the interface was composed of Ser656 and Gly660 residues on

consecutive turns. Based on these calculations it was suggested

that activation of the ErbB2 receptor involves rotation of the helices

within the TM domain in switching between these two conforma-

tions (Fleishman et al., 2002), in harmony with the proposition of

rotation-coupled activation (Jiang and Hunter, 1999).

The aforementioned computations that served as the basis

for suggesting a molecular model for rotation-coupled activation

of ErbB2 (Fleishman et al., 2002) used a drastically simplified

representation of the helices, which comprised solely Ca atoms

forming canonical a-helices. To test the feasibility of the suggested

molecular mechanism in a more realistic context, we used the

method presented in this paper starting from the stable conformation

involving the Gly668 and Gly672 residues. Two peptides, each of

Fig. 2. Expansion of T using an RRT-based algorithm. The edge from qnear

travels toward qrand up to the boundary of the Cforbid region.
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which corresponds to the TM domain of ErbB2 [LTSIVSAVV-

GILLVVVLGVVFGILI], were built as canonical a-helices. They

were assembled in a structure that resembled the stable conforma-

tion, and side-chains were added to the structure using the SCWRL

software (Canutescu et al., 2003). Each atom was assigned a vdW

radius according to the CHARMM19 forcefield (Neria et al., 1996),

and the conformational space (external and internal dofs) was

explored using the RRT procedure, subjected to two opposing con-

straints on the distance between the helices. The first was self

avoidance: vdW clashes between atoms were not allowed beyond

40% overlap between their radii (i.e. K ¼ 60%, Section 2.1). An

opposing constraint was imposed on the maximal distance between

the helices: conformations in which the LJ potential was above a

pre-defined cutoff of �5 kcal/mol were excluded. The cutoff value

was empirically found to facilitate an efficient exploration of the

conformational space. It was the lowest cutoff that yielded motion

pathways, i.e. a cutoff value of �6 kcal/mol resulted in paths com-

prising conformations in the vicinity of the initial state only, and

larger values of up to �2 kcal/mol gave similar pathways to those

using the �5 kcal/mol cutoff, but also sampled many irrelevant

conformations, in which the helices formed little if any contact

with one another. We also tried other measures of the helix tightness

instead of the LJ potential. For example, each conformation was

ranked by the buried-surface area of the helices (calculated with a

probe sphere of 1.4 Å) or the number of pairs of atoms that were in

contact. The resulting pathways were similar to those obtained by

the LJ potential (data not shown), implying that the method is quite

robust to the choice of energy function.

A homodimer, such as the ErbB2 TM domain simulated here, is

expected to show some degree of symmetry in its conformations. To

verify that our implementation retrieves this tendency towards sym-

metric conformations, we did not impose symmetry on the helices.

Nevertheless, the resulting pathways showed that the two helices

were symmetry-related throughout all of the simulations. In fact,

superimposition of one helix over the other, using a rotation of p

radians around the axis of symmetry of the helices’ principal axes2,

gave a mean rmsd of 0.57Å (Supplementary Material, Fig. 6). These

results encouraged us to impose symmetry on all dofs during the

exploration of the conformational space, resulting in a reduction of

the number of dofs.

Starting from the initial conformation of the helices, 10 random

trees were generated, each of which contained �320 nodes, i.e.

conformations. The conformations were clustered based on the

rmsd between the a carbons, and 29 different clusters were

found. The next step was to rank the clusters according to their

stability. Two different criteria, the total number of conformations

in each cluster and the value of the potential of the goal conforma-

tion in each cluster, were used to this end. A cluster that contained

79 conformations was ranked first by the colony function (Section

3.2). Encouragingly, the representative conformation of this cluster

corresponded to the less stable conformation suggested by

Fleishman et al. (2002). Each of the pathways was assigned a

feasibility score as described in Section 3.2, and the pathway

that was assigned the best score was presented in the movie (Sup-

plementary Material, Movie 1). The optimal pathway was com-

posed of a sequence of the most stable conformations. This is in

analogy to the path of minimum energy in chemical kinetics. Other

Fig. 3. The LJ potential curve of the conformations along the motion pathway

of ErbB2. The curve shows the energy of the preferred pathway according to

the colony energy function (Section 3.2). Step 0 corresponds to the initial

conformation where the helices were packed via the glycine residues in

positions 668 and 672, whereas step 156 corresponds to the goal conformation

where the helices interacted through Ser656 and Gly660. The energy mini-

mum in step 60 refers to packing via the Gly668-xxx-Gly672 motif in a

conformation that is energetically more favorable than the initial conforma-

tion. As expected, it was assigned a lower potential than in step 156, suggest-

ing that packing via Gly668-xxx-Gly672 is more stable than via Ser656-xxx-

Gly660 motif as suggested previously (Fleishman et al., 2002).

Fig. 4. Crossing angles (�) and interaxial distance (Å) between the helices

axes along the most favorable motion pathway simulating the motion in the

ErbB2 homodimer. Crossing angles are marked by the continuous curve

whereas interaxial distances are marked by the dashed curve. Step 0 corre-

sponds to the initial conformation where the helices were packed via the

glycine residues in positions 668 and 672, whereas step 156 corresponds

to the goal conformation where the helices interacted through the Ser656-

xxx-Gly660 motif.

2For the two axes ‘1 and ‘2 of the helices, we choose an axis of symmetry,

namely a line ‘ such that rotation of p radians around ‘ will align ‘1 with ‘2.

Further details can be found in the Supplementary Material.
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characteristics of this pathway are presented in Figures 3 and 4, and

representative snapshots from this pathway are provided in Figure 4.

It is interesting to note that pathways that were ranked below this

one partially overlapped with it.

Figure 3 shows the potential curve of the pathway that was ranked

first according to the colony function. The pathway starts from the

stable conformation involving the Gly668 and Gly672 residues (Fig.

5A) towards the less stable conformation involving the Ser656 and

Gly660 residues (Fig. 5B). The energy is indicative of the stability

of the conformation, e.g. in step 60, the pathway leads to the ener-

getically most favorable conformation of packing via the Gly668-

xxx-Gly672 motif where the distance between the helices is very

small (6.5 Å) and the crossing angle is around �35�. The path ends

in a conformation where the helices are packed via the Ser656-xxx-

Gly660 motif. This conformation is associated with a less pro-

nounced trough in the curve, where the interaxial distance between

the helices is 7.5 Å and the angle is around �45�. Both this and the

initial conformation (Fig. 5A) correspond to ridges-into-groves

packing between the helices (Chothia et al., 1981) via the Ser-

xxx-Gly and Gly-xxx-Gly motifs, respectively. In fact, it is evident

from the movie (Supplementary Material, Movie 1) that the helices

move subjected to the ridges-into-groves packing and that the sta-

bility at each step along the pathway is determined by the steric

properties of the residues that mediate the inter-helix contact. For

example, the least stable conformation (around Step 120) corre-

sponds to the packing via Val664 residues. As suggested by

Fleishman et al. (2002), the bulkiness of this residue interferes

with the ridges-into-groves packing and this conformation, which

determines the height of the energy barrier between the initial and

final conformations in our suggested motion pathway. It is encoura-

ging that the search, which started from a conformation that was in

the vicinity of the most stable conformation, yielded both the most

stable conformation (step 60) and a less favorable, but stable, con-

formation (step 156).

In addition, we examined the backward motion from a conforma-

tion where the helices are packed via the Ser656-xxx-Gly660 motif

towards the conformation in which the helices are packed via the

Gly668-xxx-Gly672 motif. The results (Supplementary Material,

Movie 2) showed that the motion that was ranked first was very

similar (in reverse order) to the original path. It ended in a goal

conformation with an rmsd of �1.4Å from the initial conformation

of the original path.

Glycophorin A is a bitopic TM protein that forms stable homo-

dimers, and the NMR structure of this protein shows that the two

TM helices are packed together via Gly79 and Gly83, similar to the

Gly-xxx-Gly motif in one of the conformations suggested for ErbB2

above (MacKenzie et al., 1997). We carried out calculations using

the NMR structure as the initial conformation. The calculation,

which can be thought of as a negative control experiment, resulted

in a few redundant pathways, comprising of native-like conforma-

tions (Supplementary Material, Movie 3).

5 DISCUSSION

A new RRT algorithm for the detection of stable conformations in

TM proteins and putative pathways between them was presen-

ted here. In its pure form, the algorithm is based on geometric

considerations, and energetic criteria may be added in a flexible

A B

Fig. 5. The initial Gly668-xxx-Gly672 (A) and final Ser656-xxx-Gly660 (B) conformations of the TM domain of the ErbB2 homodimer. The Gly-xxx-Gly

(A) and Ser-xxx-Gly (B) interfaces are marked in dark gray on the molecular surface of the helix at the back. The helix on the front is presented using a balls-and-

sticks model, and the glycine and serine residues that comprise the motifs are presented using space-filled model.
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way. The current implementation is based on the LJ potential

[Equation (1)].

It should be noted, however, that the calculated energy is unrea-

listically large in magnitude (e.g. Fig. 3), which is typical for force

fields. Thus, the results should be examined only qualitatively. The

reason for the apparent success of the potential of Equation (1) to

provide reasonable pathways may be indicative of the significance

of vdW interactions in stabilizing the conformations. Alternatively,

the success of such a rudimentary potential, that excludes all other

components of the inter-protein interactions, as well as the effects of

the lipids and membrane structure, may be fortuitous. This issue will

be clarified as more examples are investigated.

The calculations are very fast. For example, the 10 trees that were

used to investigate the ErbB2 dimer (Section 4) were produced

within <4 h on a standard desktop PC, which is significantly faster

than typical molecular dynamics simulations of a similar system.

The short simulation time and the flexible nature of the algorithm

enable testing many aspects of the system, including the effects of

changes in the energy function. Given a TM protein of interest, one

can conduct a few test runs to converge to a reasonable procedure, as

we demonstrated here for the TM domain of the ErbB2 and Gly-

cophorin A homodimers.

In this preliminary work, we have focused on simple systems

comprising pairs of a-helices, thus circumventing the complexities

of modeling loops that connect pairs of helices. Our method can be

generalized to TM proteins with an arbitrary number of helices and

possibly also to water-soluble proteins of the a-helix bundle class.

The addition of more helices will obviously increase the number of

dofs. However, it will also reduce Cfeasible owing to self-avoidance

effects. Cfeasible may be reduced further because many conforma-

tions of the helices may be incompatible with the lengths of the

loops that connect them (Enosh et al., 2004).
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